多模态模型(MLLM)论文串烧

近期看了一些多模态方向的工作,包括图像、文本多模态,图像、视频、语音、文本多模态,做个总结。

Yi

Qwen-VL

LLaVA

MobileVLM

LanguageBind

Video-LLaVA

VAST

Video-ChatGPT

Chat-UniVi

MiniCPM-V: A GPT-4V Level MLLM on Your Phone

这是一个主打可以在移动端轻量化运行的模型,主要的运行性能提升操作包含:

  • 在 GGML 框架基础上进行 4 bit 量化;
  • 基于 llama.cpp 的部署框架;
  • 内存使用优化:不同时加载 ViT 和 LLM,而是先加载 ViT 进行图像编码,然后加载 LLM 进行 token 编码,来降低内存使用,并且提高图像处理效率;
  • 编译优化:直接在目标设备上进行编译,提高运行效率;
  • llama.cpp 配置优化:在 llama.cpp 的配置中,根据运行设备选择最合适的配置参数,而不是使用一个默认参数;
  • NPU 加速:对于有 NPU 的设备,将 QNN 作为 ViT 的运行后端,而 llama.cpp 作为 LLM 的后端,获得进一步的加速。

Unifying Multimodal Retrieval via Document Screenshot Embedding(DSE)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哇哇九号

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值