线性代数系列讲解第九篇 线性变换

本文介绍了线性变换的概念,通过矩阵表示解释了线性变换的性质。文中列举了投影、平移、取模和旋转变换等例子,探讨了它们是否满足线性变换的条件。特别是,详细阐述了矩阵A如何表示线性变换T(v)=Av,并讨论了如何根据矩阵对基向量的影响来确定对所有向量的影响。最后提到了当矩阵A的特征向量为基向量时,A是对角矩阵的情况。
摘要由CSDN通过智能技术生成

线性变换(linear transformation)

矩阵其实就是做线性变换,线性变换需要两个条件,其实跟向量空间有点像。
条件: 1. T ( v + w ) = T ( v ) + T ( w ) T(v+w)=T(v)+T(w) T(v+w)=T(v)+T(w)
  2. T ( c v ) = c T ( v ) \qquad\,2.T(cv)=cT(v) 2.T(cv)=cT(v)
我们可以将上述两个条件写成一个式子也可以
T ( c v + d w ) = c T ( v ) + d T ( w ) \qquad \qquad \qquad T(cv+dw)=cT(v)+dT(w) T(cv+dw)=cT(v)+dT(w)
其中 T T T代表的是一种变换(或者映射(mapping)), v v v, w w w代表的是向量。
我们先举几个变换的例子,判断它是不是线性变换吧。
例子1:投影(Projection)
T : R 2 → R 2 T:R^2\rightarrow R^2 T:R2R2
在这里插入图片描述
我们可以验证以上两个条件,满足以上两个条件,因此,投影是线性变换。
例子2:平面平移
T : v → v + v 0 T: v\rightarrow v+v_0 T:vv+v0
在这里插入图片描述
我们看看这个变换符合条件不,它并不符合条件,因为若我们将 v v v翻倍, T ( v ) T(v) T(v)并没有翻倍。
例子3:取向量的模
T : R 3 → R 1    T ( v ) = ∣ ∣ v ∣ ∣ T:R^3\rightarrow R^1\\\;\\T(v)=||v|| T:R3R1T(v)=v
我们可以发现这个变换也不符合条件, T ( − v ) ≠ − T ( v ) T(-v)\neq -T(v) T(v)=T(v)
例子4:旋转变换
T : R 2 → R 2 T:R^2\rightarrow R^2 T:R2R2
在这里插入图片描述
这个变换符合线性变换的条件,因此是个线性变换。

矩阵 A A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值