锐角三角函数

本文介绍了初中阶段的三角函数(正弦、余弦、正切)的概念,强调它们与直角三角形边长的关系,提到了特殊角的三角函数值记忆方法,以及锐角三角函数的取值范围和它们之间的关系,最后展示了勾股定理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

初中阶段所学三角函数包括如下三个:

正弦函数:直角三角形中,一个锐角(如∠A)的对边与斜边的比值,记作:sinA

余弦函数:直角三角形中,一个锐角(如∠A)的邻边与斜边的比值,记作:cosA

正切函数:直角三角形中,一个锐角(如∠A)的对边与邻边的比值,记作:tanA

从定义不难看出,这三个函数表示的是在直角三角形中,三条边中两条边的比值。

这里需要特别注意的是:锐角三角函数是角度与边比值之间的关系,角度确定了,对应的三角函数也就确定了。也就是说,直角三角形中,边的比值是可以由角度唯一确定的。

特殊角的三角函数值

一些特殊角度的三角函数值,需要记住。这里提供两个方案。

方案一:背下来。这个方法个人不是很赞同,数学中的内容没有需要背诵的,如果能理解或者计算,不建议使用如下表格


方案二:用两个直角三角形就可以记住。在30°、60°、90°的三角形中,可以现场计算与30°,60°有关的所有三角函数值。在45°、45°、90°的三角形中,可以现场计算与45°有关的所有三角函数值。这个方法可以很好的帮助理解各个三角函数,也可以很快的准确得到对应的三角函数值。

锐角三角函数的取值范围

因为直角三角形的斜边一定大于直角边,所有锐角三角函数中,正弦函数、余弦函数的取值范围都是在0和1之间(不包括0和1)

因为直角三角形的两条直角边大小关系不确定,所以正切函数只需要大于0即可。

锐角三角函数之间的关系

可以试试在同一个直角三角形中来理解下面这些式子。在Rt△ABC中,∠C=90°。AB=c,BC=a,AC=b,则sinA=a/c,cosA=b/c,sinB=b/c,cosB=a/c,tanA=a/b,tanB=b/a。

从这些式子中可以看到,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA与tanB互为倒数。

根据勾股定理,还可以得到另外一个重要的式子:

sin²A+cos²A=1

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值