锐角三角函数

本文介绍了初中阶段的三角函数(正弦、余弦、正切)的概念,强调它们与直角三角形边长的关系,提到了特殊角的三角函数值记忆方法,以及锐角三角函数的取值范围和它们之间的关系,最后展示了勾股定理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

初中阶段所学三角函数包括如下三个:

正弦函数:直角三角形中,一个锐角(如∠A)的对边与斜边的比值,记作:sinA

余弦函数:直角三角形中,一个锐角(如∠A)的邻边与斜边的比值,记作:cosA

正切函数:直角三角形中,一个锐角(如∠A)的对边与邻边的比值,记作:tanA

从定义不难看出,这三个函数表示的是在直角三角形中,三条边中两条边的比值。

这里需要特别注意的是:锐角三角函数是角度与边比值之间的关系,角度确定了,对应的三角函数也就确定了。也就是说,直角三角形中,边的比值是可以由角度唯一确定的。

特殊角的三角函数值

一些特殊角度的三角函数值,需要记住。这里提供两个方案。

方案一:背下来。这个方法个人不是很赞同,数学中的内容没有需要背诵的,如果能理解或者计算,不建议使用如下表格


方案二:用两个直角三角形就可以记住。在30°、60°、90°的三角形中,可以现场计算与30°,60°有关的所有三角函数值。在45°、45°、90°的三角形中,可以现场计算与45°有关的所有三角函数值。这个方法可以很好的帮助理解各个三角函数,也可以很快的准确得到对应的三角函数值。

锐角三角函数的取值范围

因为直角三角形的斜边一定大于直角边,所有锐角三角函数中,正弦函数、余弦函数的取值范围都是在0和1之间(不包括0和1)

因为直角三角形的两条直角边大小关系不确定,所以正切函数只需要大于0即可。

锐角三角函数之间的关系

可以试试在同一个直角三角形中来理解下面这些式子。在Rt△ABC中,∠C=90°。AB=c,BC=a,AC=b,则sinA=a/c,cosA=b/c,sinB=b/c,cosB=a/c,tanA=a/b,tanB=b/a。

从这些式子中可以看到,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA与tanB互为倒数。

根据勾股定理,还可以得到另外一个重要的式子:

sin²A+cos²A=1

内容概要:本文详细介绍了如何使用Matlab对地表水源热泵系统进行建模,并采用粒子群算法来优化每小时的制冷量和制热量。首先,文章解释了地表水源热泵的工作原理及其重要性,随后展示了如何设定基本参数并构建热泵机组的基础模型。接着,文章深入探讨了粒子群算法的具体实现步骤,包括参数设置、粒子初始化、适应度评估以及粒子位置和速度的更新规则。为了确保优化的有效性和实用性,文中还讨论了如何处理实际应用中的约束条件,如设备的最大能力和制冷/制热模式之间的互斥关系。此外,作者分享了一些实用技巧,例如引入混合优化方法以加快收敛速度,以及在目标函数中加入额外的惩罚项来减少不必要的模式切换。最终,通过对优化结果的可视化分析,验证了所提出的方法能够显著降低能耗并提高系统的运行效率。 适用人群:从事暖通空调系统设计、优化及相关领域的工程师和技术人员,尤其是那些希望深入了解地表水源热泵系统特性和优化方法的专业人士。 使用场景及目标:适用于需要对地表水源热泵系统进行精确建模和优化的情景,旨在找到既满足建筑负荷需求又能使机组运行在最高效率点的制冷/制热量组合。主要目标是在保证室内舒适度的前提下,最大限度地节约能源并延长设备使用寿命。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解和复现整个建模和优化过程。同时,作者强调了在实际工程项目中灵活调整相关参数的重要性,以便获得更好的优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值