基本概念
初中阶段所学三角函数包括如下三个:
正弦函数:直角三角形中,一个锐角(如∠A)的对边与斜边的比值,记作:sinA
余弦函数:直角三角形中,一个锐角(如∠A)的邻边与斜边的比值,记作:cosA
正切函数:直角三角形中,一个锐角(如∠A)的对边与邻边的比值,记作:tanA
从定义不难看出,这三个函数表示的是在直角三角形中,三条边中两条边的比值。
这里需要特别注意的是:锐角三角函数是角度与边比值之间的关系,角度确定了,对应的三角函数也就确定了。也就是说,直角三角形中,边的比值是可以由角度唯一确定的。
特殊角的三角函数值
一些特殊角度的三角函数值,需要记住。这里提供两个方案。
方案一:背下来。这个方法个人不是很赞同,数学中的内容没有需要背诵的,如果能理解或者计算,不建议使用如下表格
方案二:用两个直角三角形就可以记住。在30°、60°、90°的三角形中,可以现场计算与30°,60°有关的所有三角函数值。在45°、45°、90°的三角形中,可以现场计算与45°有关的所有三角函数值。这个方法可以很好的帮助理解各个三角函数,也可以很快的准确得到对应的三角函数值。
锐角三角函数的取值范围
因为直角三角形的斜边一定大于直角边,所有锐角三角函数中,正弦函数、余弦函数的取值范围都是在0和1之间(不包括0和1)
因为直角三角形的两条直角边大小关系不确定,所以正切函数只需要大于0即可。
锐角三角函数之间的关系
可以试试在同一个直角三角形中来理解下面这些式子。在Rt△ABC中,∠C=90°。AB=c,BC=a,AC=b,则sinA=a/c,cosA=b/c,sinB=b/c,cosB=a/c,tanA=a/b,tanB=b/a。
从这些式子中可以看到,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA与tanB互为倒数。
根据勾股定理,还可以得到另外一个重要的式子:
sin²A+cos²A=1