递归:最大公约数问题

题目描述

输入a,b 问a与b的最大公约数;

分析

思路1:

采用辗转相除法,

如果那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。

非常的清晰

代码
#include<bits/stdc++.h>
using namespace std;
int a,b;
int gcd(int a,int b)
{
	//if(a%b==0) return b;
	//else return gcd(b,a%b);
	return (a%b) ? gcd(b,a%b) : b;
}
int main()
{
	cin>>a>>b;
	cout<<gcd(a,b);
}

代码里 return (a%b) ? gcd(b,a%b) : b; 采用了三目运算符;  其效果等同于注释两行

三目运算符:

形如a? b:c的式子,意思为如果a为真,则值是b,否则是c

∴(a%b) ? gcd(b,a%b) : b:如果a%b为真(不等于0),则返回 gcd(b,a%b),否则返回b

 思路2:

采用更相减损法

第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。

第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。

 所以如果a>b,a=a-b,否则,b=b-a;

当a=b时,结束递归;

代码
#include<bits/stdc++.h>
using namespace std;
int a,b;
int gcd2(int a,int b)
{
	if(a==b) return a;//也可以return b;
	else if(a>b) return gcd2(a-b,b);
	     else return gcd2(a,b-a); 
 } 
int main()
{
	cin>>a>>b;
	cout<<gcd2(a,b);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值