题目描述
输入a,b 问a与b的最大公约数;
分析
思路1:
采用辗转相除法,
如果那么a和b的最大公约数等于b和a%b的最大公约数,然后把b和a%b作为新一轮的输入。
由于这个过程会一直递减,直到a%b等于0的时候,b的值就是所要求的最大公约数。
非常的清晰
代码
#include<bits/stdc++.h>
using namespace std;
int a,b;
int gcd(int a,int b)
{
//if(a%b==0) return b;
//else return gcd(b,a%b);
return (a%b) ? gcd(b,a%b) : b;
}
int main()
{
cin>>a>>b;
cout<<gcd(a,b);
}
代码里 return (a%b) ? gcd(b,a%b) : b; 采用了三目运算符; 其效果等同于注释两行
三目运算符:
形如a? b:c的式子,意思为如果a为真,则值是b,否则是c
∴(a%b) ? gcd(b,a%b) : b:如果a%b为真(不等于0),则返回 gcd(b,a%b),否则返回b
思路2:
采用更相减损法
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
所以如果a>b,a=a-b,否则,b=b-a;
当a=b时,结束递归;
代码
#include<bits/stdc++.h>
using namespace std;
int a,b;
int gcd2(int a,int b)
{
if(a==b) return a;//也可以return b;
else if(a>b) return gcd2(a-b,b);
else return gcd2(a,b-a);
}
int main()
{
cin>>a>>b;
cout<<gcd2(a,b);
}