poj1386 Play on Words

题面在这里

题意:

给n个字符串,两个字符串若头尾字符相同可以连接起来,问你是否可以把n个字符串连接起来。

做法:

对于一个单词,把它头尾的字符之间连一条有向边,然后问题转化为求这个图是否存在欧拉路径。
一个有向图存在欧拉路径的判断方式:

  1. 图弱连通
  2. 所有点的入度都等于出度;或只有两个点的入度不等于出度,且这两个点一个入度-出度=1,另一个出度-入度=1.

代码:

/*************************************************************
    Problem: poj 1386 Play on Words
    User: bestFy
    Language: C++
    Result: Accepted
    Time: 329MS
    Memory: 660K
    Submit_Time: 2018-01-24 11:19:16
*************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cctype>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long ll;

inline ll read() {
    char ch = getchar(); ll x = 0; int op = 1;
    for(; !isdigit(ch); ch = getchar()) if(ch == '-') op = -1;
    for(; isdigit(ch); ch = getchar()) x = x*10+ch-'0';
    return x*op;
}
inline void write(ll a) {
    if(a < 0) putchar('-'), a = -a;
    if(a >= 10) write(a/10); putchar('0'+a%10);
}

int n;
char s[1010];
int fa[100], in[100], out[100];

inline int getfa(int x) { return fa[x] == x ? x : fa[x] = getfa(fa[x]); }
int main() {
    int test = read();
    while(test --) {
        n = read(); int st = 0;
        memset(in, 0, sizeof in); memset(out, 0, sizeof out);
        for(int i = 1; i <= 26; i ++) fa[i] = i;
        for(int i = 1; i <= n; i ++) {
            scanf("%s", s); int len = strlen(s);
            int x = s[0]-'a'+1, y = s[len-1]-'a'+1, fx, fy;
            in[y] ++; out[x] ++; st = x;
            fx = getfa(x); fy = getfa(y);
            if(fx != fy) fa[fx] = fy;
        } bool flag = 1; int t1 = 0, t2 = 0;
        for(int i = 1; i <= 26; i ++) {
            if(in[i]+out[i] == 0) continue;
            if(getfa(st) != getfa(i) || abs(in[i]-out[i]) > 1) { flag = 0; break; }
            if(abs(in[i]-out[i]) == 1) if(in[i]-out[i] == 1) t1 ++; else t2 ++;
        }
        if(flag && (t1 == 0 && t2 == 0 || t1 == 1 && t2 == 1)) puts("Ordering is possible.");
        else puts("The door cannot be opened.");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值