知识图谱中NLP新技术

在这里插入图片描述

知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:


一、核心技术突破

  1. 基于预训练模型的图谱构建与增强

    • 预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提升实体表示和关系推理能力。例如,KEPLER模型在链接预测任务中表现优异,同时支持文本增强的知识图谱嵌入。
    • 动态知识补全与低资源优化:采用Prompt-tuning技术,通过模板生成将知识图谱补全任务转化为预训练模型的掩码预测问题,显著降低低资源场景下的训练成本。百度文心的ERNIE-Sage模型进一步结合图结构学习,实现文本与图数据的对齐,增强常识推理能力。
  2. 图神经网络(GNN)的深度应用

    • 图注意力与序列建模结合:Graph-BERT模型通过无连接子图采样和Transformer架构,解决传统GNN在大规模图谱中的并行化瓶颈,提升实体关系推理效率。
    • 多任务提示学习:借鉴NLP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔王阿卡纳兹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值