【VIT】阅读笔记

本文详细解读了2021年ICLR发表的Vision Transformer (VIT)架构,该架构首次将纯Transformer应用于图像识别任务。针对Transformer在CV领域的应用挑战,VIT将图像划分为16x16的patches,显著降低序列长度。网络结构中,位置编码用于保留patch顺序信息,而class token则用于分类任务,确保与原始Transformer的一致性。
摘要由CSDN通过智能技术生成

论文地址:https://arxiv.org/abs/2010.11929
代码地址:https://github.com/google-research/vision_transformer
视频推荐:点击进入
好文章地址:点击进入
好的文章地址:点击进去
<<AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE>>2021年发布在ICLR,在该文章中首次提出了VIT架构。

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值