Machining feature recognition using BRepNet(加工特征识别)
2023 Journal of Mechanical Science and Technology
Machining feature recognition using BRepNet(基于BRepNet的机械加工特征识别)
摘要
自20世纪80年代以来,利用各种方法对三维(3D)计算机辅助设计(CAD)模型的加工特征进行了许多尝试。近年来,深度学习方法在机械加工特征识别中得到了广泛的应用。然而,边界表示(BRep)模型是3D CAD模型最常见的表示形式,由于其结构复杂,难以直接用于深度学习。为了解决这个问题,最近提出了BRepNet。提出了一种利用BRepNet对以BRep为代表的三维CAD模型进行加工特征识别的方法。在该方法中,基于加工特征,利用BRepNet对三维CAD模型的各个面进行分类。然后,使用连通分量分析将分类后的面组合成加工特征。此外,还生成了一个数据集来训练BRepNet模型。
随后,对所提出的方法进行了实现和验证。该方法的准确率为96.03%,部分相交比联合(pIoU)的准确率为90.57%
加工特征识别的关键在于利用一个网络对CAD模型的面进行有效分类,并通过连通分量分析将分类后的面组合成最终的加工特征。