SNE-RoadSeg 自动驾驶可通行区域检测,附代码和数据下载

可通行区域检测(FreeSpace detection)是自动驾驶环境感知的重要内容,而可通行区域可被假设为“地平面”,其上的点具有一致的表面法向量。

据此,来自UC San Diego 与 HKUST 的学者提出一种表面法向估计(SNE)方法,并将其与RGB数据融合提出可通行区域检测算法SNE-RoadSeg,同时作者还建立了大型虚拟数据集,实验证明在多个不同数据集上该算法都取得了最好的精度。

SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection

作者 | Rui Fan, Hengli Wang, Peide Cai, Ming Liu

单位 | UC San Diego ,HKUST

论文 | https://arxiv.org/abs/2008.11351

代码 | https://github.com/hlwang1124/SNE-RoadSeg

主页 | https://sites.google.com/view/sne-roadseg/home

备注 | ECCV 2020 论文

SNE-RoadSeg 算法流程࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值