可通行区域检测(FreeSpace detection)是自动驾驶环境感知的重要内容,而可通行区域可被假设为“地平面”,其上的点具有一致的表面法向量。
据此,来自UC San Diego 与 HKUST 的学者提出一种表面法向估计(SNE)方法,并将其与RGB数据融合提出可通行区域检测算法SNE-RoadSeg,同时作者还建立了大型虚拟数据集,实验证明在多个不同数据集上该算法都取得了最好的精度。
SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection
作者 | Rui Fan, Hengli Wang, Peide Cai, Ming Liu
单位 | UC San Diego ,HKUST
论文 | https://arxiv.org/abs/2008.11351
代码 | https://github.com/hlwang1124/SNE-RoadSeg
主页 | https://sites.google.com/view/sne-roadseg/home
备注 | ECCV 2020 论文
SNE-RoadSeg 算法流程