本文盘点CVPR 2020 所有人体姿态估计(Human Pose Estimation)、手势识别(Gesture Recognition)、人体形状与姿态估计(Human Shape and Pose Estimation)、人体运动捕捉(Human Motion Capture)相关论文,总计27篇,对文献进行了分类汇总,希望对大家有帮助。
人体姿态估计分为2D(6篇)和3D(11篇)两大类;手势识别只有两篇文献,一篇基于骨架,另一篇基于点云的;人体形状与姿态估计是同时计算人体的姿态和网格有,有3篇;动作捕捉对人体形状和姿态进行连续计算,反应人体的运动,在动画制作、电影特效有重要应用。
另外还有一篇手持物体的姿态估计,同时对人手进行2D/3D姿态估计和物体6D位姿估计,代码已开源。
大家可以在:
http://openaccess.thecvf.com/CVPR2020.py
按照题目下载这些论文。
如果想要下载所有CVPR 2020论文,请点击这里:
CVPR 2020 论文全面开放下载,含主会和workshop
2D 人体姿态估计
一种不需要后处理的单人姿态估计方法,可扩展到视频
[1].UniPose: Unified Human Pose Estimation in Single Images and Videos
作者 | Bruno Artacho, Andreas Savakis
单位 | 罗切斯特理工学院
对之前SOTA方法数据处理部分的无偏处理,大幅提升了精度
[2].The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation
作者 | Junjie Huang, Zheng Zhu, Feng Guo, Guan Huang
单位 | XForwardAI Technology Co.,Ltd;清华
代码 | https://github.com/HuangJunJie2017/UDP-Pose
一种新的自下而上的人体姿势估计方法,用于使用高分辨率特征金字塔学习尺度感知表示。该方法配备了用于训练的多分辨率监督和用于推理的多分辨率聚合,能够解决自下而上的多人姿势估计中的尺度变化挑战,并能更精确地定位关键点,尤其是对于小人物。
[3].HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation
作者 | Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S. Huang, Lei Zhang
单位 | UIUC;微软;俄勒冈大学
代码 | https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
解读 | https://blog.csdn.net/weixin_40671425/article/details/105600137
分布感知的坐标表示用于姿态估计。利用heatmap上的最大值以及其对应位置m, 来估计真实高斯分布均值位置μ. 这样的量化误差能够得到最大程度上的减轻。
[4].Distribution-Aware Coordinate Representation for Human Pose Estimation
作者 | Feng Zhang, Xiatian Zhu, Hanbin