Cursor高阶玩法:培养并行进化的赛博生物?(下)

上篇中我们用生物进化类比了AI编程,并指出进化应该具有并行演进的特点,很快,我就发现已经有人开始这么干了。

 

 

 

如上图这种利用MCP是一种非常巧妙的思路,利用MCP打通多个客户端直接的数据传输,实现客户端之间信息信息同步。

 

https://www.youtube.com/watch?v=D0iXkmyWcPM

 

(直觉上,A2A是一种对等协议,在通信时可以互为服务端和客户端,比MCP实现起来更加方便,只是cursor官方似乎还没有支持)

 

MCP 模型上下文协议类似传统服务器和客户端模式,服务器掌控全局,客户端只能被动请求,双方地位、功能不平等,是不对等协议。A2A 协议则是对等网络,各节点地位、功能平等,可互为服务端和客户端,是一种对等协议。

 

上篇中,我们想到了敏捷开发的方式,那么如何用敏捷的方法来给AI分配任务计划呢?

 

在上面视频中用MCP给两个Cursor派活的基础上,更进一步很容易想到,gitee不是已经支持MCP了吗,用胶水代码代码粘合一下gitee和cursor是不是就可以了?

 

比如:

 

P表示AI产品负责人,C1、C2、C3...表示AI开发者。

 

列出待办项:

 

  人类编写product_backlog.md产品待办列表(Product Backlog)列出所有的需求、功能和修复项,注意让AI复述任务提出疑问,完善待办项的细节和验收标准,更新product_backlog.md文档。

 

  P读取product_backlog.md文档调用Gitee MCP Server创建Issue列表。

 

任务分配:

 

  AI开发者自行从issue列表中获取。

 

任务状态跟踪:

 

  AI开发者读issue列表,如果有待处理(open)项就领取issue任务,更新issue状态为进行中(progressing),并开始执行任务:拉取master分支,新建自己的任务分支(用issue id命名)开发功能,完,更新issue待办项状态为:审核中(In Review)并提交pull request,并在issue评论中提供pull request id。同时,AI需要记录工作日志,比如:C1生成log_c1.md,记录自己完成了什么工作。

 

  P通过Gitee MCP Server列出所有审核中(In Review)的issue,获得需要拉取的id,拉取分支,测试通过后合并到master分支,并更新issue任务状态为:已完成(Done),直到所有任务完成。

 

不过我也想到,上面我说的gitee MCP也不是必须的。我们可以规划任务,用列表来表示任务看板,用多线程/多进程代表不同的AI开发者,只需要维护和更新这个列表的状态即可。而每一个AI开发者只要负责执行任务就好。等等,这不是manus的思路,有规划者有执行者,还有沙箱……像Manus这中类型的Agent在产品内部完成任务规划和并行化执行是不是效率更高呢?

 

那为什么程序员最爱的还是Cursor而不是像manus这样的通用Agent呢?为什么我们需要“人在回路”,问题出在哪里?

 

问题可能涉及模型的基础架构,总所周知目前的大模型存在幻觉,聊天主题会随着上下文窗口漂移,没有长期记忆,模型不能主动推理,只具有静态的世界观,以至于模型难以像人一样被使用。这就导致了“人在回路” 的必要性。

 

全自动AI并行编码和通用Agent一样,需要建立在模型没有幻觉的基础上,不论是RAG还是用提示词工程还是用外部工具来弥补推理能力,本质上都是在通过外挂解决模型基础架构上能力不足的问题。只要 Vibe coding 不能自主调试的硬伤还在,全自动化AI并行编程可能还要等一等吧。

 

可以这样理解:若模型没有幻觉,或许就不再需要我们去手动规划或者手动并行化处理一些任务,这时我们需要的是Agentic Agent;而倘若模型有幻觉,人在回路就不可或缺了,毕竟得依靠人类来判断方向是否正确,这时我们需要的是Human in the loop Agent。而对于一些步骤相对固定的工作,我们需要的是 workflow Agent,模型需要多智能,取决于场景有多复杂。

 

人工智能领域中几种不同类型的代理(agent)的概念。

 

Agentic Agent(自主代理)

 

概念:Agentic agent 是一种具有高度自主性的代理。它能够在复杂多变的环境中独立地设定目标、规划行动方案,并且根据环境反馈不断调整自己的行为来完成任务。这种代理拥有比较强大的决策能力和适应性。

 

举例:像一些高级的机器人探索者,例如在火星表面的探测机器人。它们需要在遥远的火星环境中自主地决定探索路线,根据不同的地形、气候条件等因素来调整自己的探测方式。它们能够在没有地球实时控制的情况下,独立完成诸如采集样本、拍摄图像、分析周围环境等复杂任务。

 

应用场景:在太空探索、深海探险等很难进行实时人工干预的环境中,以及一些需要处理复杂问题的自动化系统中,如高度复杂的工业自动化生产流程中的智能监控和调度系统,用于优化生产流程、预测设备故障并自主采取措施等。

 

Workflow Agent(工作流代理)

 

概念:Workflow agent 主要侧重于在已有的业务流程或工作流程中执行特定的步骤或者对流程进行优化。它通常是在一个预先定义好的流程框架内工作,按照规定的规则和顺序完成任务,以确保整个流程的高效、准确运行。

 

举例:在一个企业的订单处理流程中,workflow agent 可以负责从接收订单开始的一系列操作。当收到一个订单后,它按照既定流程先检查订单信息的完整性,然后将订单分配给相应的仓库进行发货准备,接着通知财务部门进行收款操作等。在这个过程中,它严格按照预设的工作流步骤执行任务。

 

应用场景:在企业资源规划(ERP)系统、客户关系管理(CRM)系统等业务流程管理软件中广泛应用。它帮助组织自动化办公流程、生产流程等,提高工作效率,减少人工错误。

 

Human - in - the - Loop Agent(人机协作代理)

 

概念:Human - in - the - Loop agent 是一种将人类的智能与代理的自动化能力相结合的代理类型。它在决策或执行过程中依赖人类的参与和指导。人类可以在关键步骤或者复杂决策点提供判断、知识或经验,而代理则负责处理一些重复性、规律性的任务,或者协助人类完成复杂的部分。

 

举例:在智能医疗诊断系统中,human - in - the - loop agent 会先对患者的症状、检查数据等进行初步分析,筛选出可能的疾病范围。然后,将这些信息呈现给医生,医生根据自己的临床经验和专业知识来做出最终的诊断决定。同时,代理还可以在医生的指示下进一步查询相关医学文献或者病例库,为医生提供更多信息支持。

 

应用场景:在需要人类专业知识和经验发挥关键作用的领域,如医疗诊断、法律文书审核、金融风险评估等场景中应用广泛。它能够充分利用人类的智慧来弥补代理在处理复杂、不确定问题时的不足,同时也发挥代理的高效、精确的数据处理能力,提高整体的工作质量。

 

这些不同类型的代理在人工智能领域有不同的适用场景和特点,它们可以相互配合,共同构建复杂的人工智能系统来满足各种各样的需求。

 

回到最初的目的,我们希望Cursor能够最大可能的自主完成编码任务。结合目前大模型的能力来说,我认为目前最佳的解决方案是工作流+人在回路:用工作流来加速一些固定流程;用人在回路把握项目方向。

 

我进行了一些搜索发现他们都把我带到这个项目:

 

https://github.com/bmadcode/cursor-custom-agents-rules-generator

 

而它的工作流部分最近几天被移动到了另一个项目:

 

https://github.com/bmadcode/BMAD-METHOD

 

该项目通过预设的敏捷流程,将系统提示词(System Prompt)工程化,与AI编码工具的原生功能形成深度互补。 

 

而且作者也非常会节省token,他特别强调,文档的产出完全可以使用免费的大模型来完成,而不是在Cursor里面来完成。整体思路就是文档先行,从头脑风暴、需求文档、架构设计、任务列表、知道产生细粒度的用户故事,最后把Cursor当做初级程序员搞开发。虽然基于前文的分析,我们可以预见,即便加入了强大的工作流,AI编程离AI自主开发还是比较远,这个工作流到最后的Cursor编码环节可能还是需要有人盯着,但是,这已经是很大的进步了。

 

2个小时前作者上传了新的教学视频,地址: 

 

https://www.youtube.com/watch?v=p0barbrWgQA&t=476s

 

嗯,似乎有必要实测一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值