- 博客(27)
- 收藏
- 关注
原创 微调 || RAG,项目落地怎么选?LLM应用选型指南,适用场景全解析
在这个过程中,模型基于新数据集修改权重和参数,学习特定于任务的模式,同时保留来自最初预训练模型的知识。某连锁餐饮企业菜品推荐系统通过微调实现40%的响应加速。金融风控模型微调案例显示,10万条标注数据训练可使反欺诈识别率从82%跃升至91%,但需承担12万元/次的训练成本。某电商客服系统通过RAG对接商品数据库,实时检索使订单查询准确率从78%提升至92%,响应速度比传统方案快2.3秒。研究报告生成系统整合50+行业数据库,通过RAG生成的深度分析内容信息量提升300%,用户满意度达92%。
2025-06-09 11:09:14
170
原创 Dify:企业级 LLM 应用落地的理想之选
它不仅内置了构建 LLM 应用所需的关键技术栈,如对数百个模型的支持、直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架和灵活的流程编排,还提供了一套易用的界面和 API。同时,Dify 在 RAG 引擎、Prompt 管理、工作流编排等功能上与 LLM 的结合更为紧密,提供了更强大的 LLM 专用能力,而 n8n 作为一个通用的自动化工具,其在 LLM 领域的功能支持相对较为通用,可能需要用户进行更多的自定义开发工作来实现特定的 LLM 应用需求。
2025-06-05 12:24:50
805
原创 李飞飞World Labs开源革命性Web端3D渲染器Forge!3D高斯溅射技术首次实现全平台流畅运行
今日,他们正式开源了Forge——一款专为Web端设计的3D高斯溅射(3D Gaussian Splatting)渲染器,不仅支持THREE.js生态,更能在手机、XR设备等低功耗硬件上实现实时流畅渲染。"这一工具不仅降低了3D内容开发的门槛,更与World Labs此前发布的"单图生成3D世界"技术形成闭环,加速空间智能(Spatial Intelligence)的落地。:支持主流3DGS文件格式(PLY、SPZ、SPLAT、KSPLAT),并可与传统网格模型混合渲染;
2025-06-04 20:40:17
811
原创 AI是如何发展成今天这个样子的?
这个看似简单的测试,却像一把钥匙,开启了人类对AI的无限想象。这场会议被后世称为「AI的创世纪」,但谁也没想到,这场理想主义盛宴背后,藏着无数现实的耳光。这个程序像一面镜子,照出了人类对情感联结的渴望,也揭示了AI技术的局限。这个能自我对弈百万次的AI,让人类第一次见识到「深度学习」的威力。资金断流、舆论嘲讽,AI成了学术界的「弃子」。今天的AI已能同时「看、听、说、写」,像《黑客帝国》中的母体般渗透进生活每个角落。1990年代,统计学习方法异军突起,通过从数据中自动发现规律,开启了数据驱动的AI新时代。
2025-06-04 20:37:20
860
原创 Anthropic发布Claude 4系列模型:AI技术进入人机协作新纪元
Anthropic发布了Claude4系列模型(Opus4与Sonnet4),标志着AI技术从单任务处理迈入持续智能协作的新阶段。该系列首次实现“扩展思维”与“记忆文件”,重新定义人机协作边界。Opus4作为全球首个可持续协作的超级编码大脑,支持数千步复杂操作,性能衰减控制在3%以内。Sonnet4则定位为工业级智能协作中枢,效率显著提升,API成本维持不变。Claude4系列的技术架构与性能指标为行业树立新标杆,开发者可通过原生API、云平台及ClaudeCodeSDK接入。该系列不仅提升开发效率,还推动
2025-05-23 10:15:56
1043
原创 10分钟入门LLM应用:用PocketFlow的100行代码玩转LLM核心设计模式
《10分钟掌握LLM核心设计模式:PocketFlow极简实践》介绍了如何通过100行代码的PocketFlow框架快速实现六大LLM设计模式。该框架采用节点(Node)和流(Flow)的极简架构,支持对话记忆、智能体决策、多阶段工作流、RAG检索增强、并行处理及人工监督等核心模式,并能灵活组合构建复杂系统。
2025-05-21 15:17:23
307
原创 Pocket Flow:用最少的代码实现用Cursor做一个Cursor
PocketFlow是一个仅用100行代码实现LLM应用高度抽象的开源项目,通过图结构和共享内存实现高效工作流。其亮点包括:1)极简代码量却功能强大;2)优秀文档支持(博客、视频、模版);3)易于AI理解和生成高质量代码;4)工作流框架可扩展至其他领域。作者提供的丰富示例让用户能快速掌握LLM应用开发,比可视化工具更高效,且产出代码便于系统集成。该项目展示了如何用精简代码实现复杂功能,开发体验令人惊喜。
2025-05-21 15:10:58
179
原创 为了复现github很火的cursor工作流,我将BMAD方法迁移到了扣子商店
最直接的思路是:选一个合适的国产AI平台,创建智能体,把txt模板上传知识库,然后直接与智能体开始对话就行,把产出的文档保存到docs文件夹。如果你和我一样,对BMAD作者的方法论十分赞同,但又觉得作者的介绍过于详尽(以至于不知道从哪里开始),无法使用gemini,渴望拥有中文版,那么接下来的部分你应该会感兴趣。简单来讲,BMAD在gemini上创建了4个gem(就是智能体),按照敏捷流程分别与这几个智能体对话,得到详尽的文档,最后根据文档开发、测试、提交。具体效果好不好,我就不乱试了,还是等作者更新吧。
2025-05-12 19:57:41
332
原创 Cursor高阶玩法:培养并行进化的赛博生物?(下)
AI开发者读issue列表,如果有待处理(open)项就领取issue任务,更新issue状态为进行中(progressing),并开始执行任务:拉取master分支,新建自己的任务分支(用issue id命名)开发功能,完,更新issue待办项状态为:审核中(In Review)并提交pull request,并在issue评论中提供pull request id。它能够充分利用人类的智慧来弥补代理在处理复杂、不确定问题时的不足,同时也发挥代理的高效、精确的数据处理能力,提高整体的工作质量。
2025-05-08 12:42:35
775
原创 如何实现智能体的记忆层?
Mem0 还具有自动记忆存储与持久化功能,能方便地捕获和存储用户与 AI 的交互、AI 的思考过程等需要被 “记住” 的信息,并支持多种后端存储。本文将介绍智能体记忆层的概念,并对采用记忆层(如 Mem0)、RAG 和向量数据库等不同方案进行比较,同时列举一些现有的开源记忆层方案,最后探讨智能体记忆层的典型应用场景。简介 :MemoryBot 是基于会话记忆的智能聊天机器人,能够记住对话中的关键信息,并在后续交互中利用这些信息提供更连贯和个性化的对话体验。
2025-04-18 20:10:56
347
原创 Cursor高阶玩法:培养并行进化的赛博生物?(上)
抛开AI沟通技巧不谈(假设你已经很擅长和AI沟通了),从软件的开发生命周期来看,似乎每一步都应该有更好的提示词。本质上是实践论也就是PDCA的再循环,而在这个方面《敏捷开发》早就给了比较详尽的解决方案,只是敏捷是面向人的,Cursor是面向AI的,而AI与人类的不同也非常明显:快、可并行、从不抱怨。在Cursor的世界中,需求即进化目标。这让我意识到,我不应该用自己知识面狭窄且推理能力不足的脑子来思考(在这些方面LLM都比我强得多),更不应该强行控制Cursor用我的思路解决问题(这只是在拖慢进化速度)。
2025-04-17 19:28:50
425
原创 有记忆的智能体有什么用?
当你失恋时,它能调出三年前你成功脱单时的"打气记录",用你自己的声音安慰你:"你看,当时你连相亲都嫌麻烦,现在却为感情纠结?这种"记忆能力"看似简单,却为AI的应用场景打开了新维度,用“agent层”“记忆层”代替传统软件的“业务逻辑层”“数据库层”,可以使智能体从单纯的工具变成人类的伙伴。在尝试动手写这样一个有记忆功能智能体的过程中,我更加坚信,LLM的知识是超越人类个体的,向量数据库存储能力也是超越人类个体的,将他们合理组合在一起,它将非常像一个真正的人类伙伴。教育助手:学习法融合的"错题终结者"
2025-04-16 18:20:21
297
原创 尝试1小时编写有长期记忆的情感陪伴智能体:Cursor到底能让编程简单到什么程度?
确实实现了一个AI-Agent并调用了向量数据库(但是似乎要聊很多次才能触发长期记忆),LLM用的kimi的moonshot-v1-8k,对话看起来似乎不是很聪明的样子。AI编程相较于传统编程,非常反常识的一点就是:你不需要先学会什么再去实现什么,而是应该假设你已经学会了所有技术细节,把注意力放在实现价值上面。让AI指出方案的不足之处,再次让AI生成《系统架构设计说明书》(但似乎不太适合MVP)就细节反复迭代,如果不知道它写了啥,问他就对了,直到获得最佳版本。说明需求,让AI复述并提出疑问。
2025-04-14 09:48:49
171
原创 Google推出A2A协议,对AI行业有哪些长远影响?
这是一项旨在打破AI智能体间信息孤岛的开放协议,其核心目标是实现不同供应商、不同框架的AI智能体之间的跨平台、跨系统无缝协作。由Google推出,是一种开放协议,旨在让不同来源、不同技术的AI智能体能够相互沟通、安全地交换信息,并协同执行跨平台的复杂任务。A2A协议将智能体之间的协作提升到新高度,形成类似于人类社交网络的生态系统,推动社会进入一个更加协作和互联的状态。过去,AI智能体往往是孤立的,A2A协议让不同厂商的智能体能够快速组队,共同完成复杂任务。
2025-04-10 14:43:37
837
原创 小米SU7事故:自动驾驶你应该知道的那些事
然而,如果算法模型对复杂场景的判断不够准确,或者对特定障碍物(如锥桶、水马等)无法有效识别,AEB系统可能无法及时启动,导致事故的发生。在小米在官方回应中明确,事发车辆是一台SU7的标准版,搭载的是一颗英伟达OrinN智驾芯片,算力只有84TOPS,相比之下小米SU7Pro、Max版采用了双OrinX芯片,算力可达508TOPS;对于小米而言,这起事故是一次严峻的考验。- 轻地图方案:小米汽车的智驾系统采用轻地图方案,这种方案相比传统的高精地图,降低了精度和要素,但提升了数据的鲜度,能够按天级更新。
2025-04-02 11:49:02
473
原创 为什么不建议你在本地跑模型:以Cline为例
本地模型是将大型模型通过蒸馏(distillation)技术精简后在本地运行的版本,训练小型模型模仿大型模型,但仅保留原模型1%-26%的容量。Cline是一个功能强大的AI编程助手,它能够通过工具调用的方式帮助用户高效地进行代码的编写、分析与修改,支持本地部署和云端API调用,为开发人员提供灵活且便捷的使用体验。当你选择在本地运行模型时,Cline会加载精简后的模型,该模型仅保留原模型1%-26%的容量。:本地模型性能受限,响应速度慢,是云端的5-10倍,复杂任务处理能力弱,多步骤任务易失败。
2025-03-28 06:38:34
734
原创 Agent TARS:字节跳动开源通用AI Agent
例如,在市场调研中,它可自动浏览网页、提取数据并生成报告,成功率高达95%。Agent TARS 已吸引超1000名开发者参与开源社区建设,未来计划扩展移动端支持,并构建插件生态系统(如电商库存管理、医疗数据解析等垂直场景工具)。支持浏览器、命令行(CLI)、文件系统及编码工具的联动操作,通过模型上下文协议(MCP)实现跨平台协作。具备短期记忆(任务上下文)和长期记忆(历史交互记录),支持连续任务执行,例如学术研究中自动整理文献并生成初稿。- 分享功能:支持将任务打包为HTML或上传云端,便于团队协作。
2025-03-26 20:31:10
4459
原创 探索AI编码的最佳实践
有限制的token就像人的工作记忆,人的工作记忆也是有限的,那么人类是怎么解决这个问题的呢?当需要多人协作的时候,会把任务的边界制定清楚,划分模块,定义接口。因为AI根本没有全局观念,特别是当项目体量变大的时候,你让AI去修改某些东西,他根本就不会去想已经实现了什么东西,时时刻刻都表现得像个刚加入团队的新人,用起来十分恼火。人具有自适应性,可以自发组织,具有很强的应对变化的能力,所以当我们发现方法1并不符合实践出真知、螺旋上升等认知规律的时候,我们发展出了方法234等,AI目前似乎并不具有这种自适应性。
2025-03-15 12:36:24
235
原创 Cursor+MCP工具,到底好不好用?
就目前的情况来看,如果Cursor没有对这些工具进行集成,而且你对这些工具完全不知道如何下手的话,让AI来帮助你是一个很好方式,但如果Cursor已经支持了或者你亲自用起来飞快,那你并不需要它。只要我们愿意,这个世界都可以为我们而设计,这种不依赖身体进化而使用“外挂”加载的方式,就是人的方式!感觉目前的MCP工具更多局限于软件、互联网、移动端、大模型领域,不知道什么时候可以看到端侧模型用MCP协议来控制物联网、机器人,但也可能不会,硬件有自己的技术栈,也许其他协议会取代MCP的地位,主要看历史怎么发展了。
2025-03-14 17:43:05
1635
原创 如何在Cursor中调用MCP工具?
整体的思路是使用Cursor作为客户端,通过MCP协议,访问MCP服务端,调用MCP服务端暴露的两个工具 get-alerts 和 get-forecast,这两个工具会联网获取天气预警和天气预报。后来发现是版本的原因,在新版本中,Composer被藏到了聊天框的左下角,并改名为“Edit”。至此,我们已经完整体验了从搭建MCP服务,到在Cursor中通过MCP客户端调用MCP服务来使用工具的完整过程。下一篇,让我们来玩一些更实用的MCP工具,探索利用Cursor和MCP开发的最佳实践。
2025-03-12 10:52:49
4119
原创 MCP:AI 应用的“USB-C”端口,为啥要用它?
MCP的主要价值在于它提供了一种通用的接口,简化了不同工具和数据源的集成。所以,如果你的目的是快速开发,应该尽可能使用支持MCP客户端的IDE(比如Cursor),并优先寻找并配置合适的MCP服务(而不是重复造轮子)。官方文档似乎并没有体现,MCP作为通用协议,对大模型和资源/工具的调用进行了解耦,并提供了安全性保障的能力。注意,在你决心开发自己的Server之前,一定要先看看下面这些网站,很多工具的MCP服务都是拿来即用的。下一篇,实战一下,如何在Cursor中通过配置MCP服务来调用工具。
2025-03-11 19:38:09
449
原创 OpenManus技术测评:3小时开源,无需10万邀请码,真有传说中那么好吗?
也不尽然,不论是用Cursor还是OpenManus复现,都只是复现了其核心功能,并未达到消费级产品的程度。个人认为,至少在2025年,产品界在通用性、专业性和易用性之间,存在一个不可能三角:又通用又易用的,不一定专业;又能通用又能专业使用的,需要用的人Know-how,也就是不那么容易使用。可以看到已经知道要查的URL了,然后它决定下载安装浏览器自动化工具playwright再继续干活,太疯狂了,我只是想简单看看天气的查询结果而已。不过它的展现出来的思维能力和使用工具的能力还是不错的。
2025-03-08 09:11:04
509
原创 Manus作为首个宣称能“直接交付任务成果”的通用AI Agent技术上是怎样实现的?和AutoGen有什么区别?
在传统的人工智能(AI)系统中,智能体(Agent)的架构通常包含 Planner(规划器) 和 Executor(执行器) 两大核心组件。• 工具调用优化:通过大模型操作系统(LLM OS)整合多模态输入(文本、图像、语音)和工具API,实现跨平台操作(如自动生成PPT时调用设计工具和数据分析库)。当前数据显示,Manus在需要深度行业知识整合的场景(如医疗报告分析)表现更优,而AutoGen在需要快速原型开发的场景(如初创公司MVP搭建)更具灵活性。团队计划通过“自主创造工具”突破此瓶颈。
2025-03-07 10:27:26
1261
原创 Multi-Agent释放AI生产力:你加上AI就是一个团队!
1只程序猿 + AI = 1家软件公司。真人实测,如何用Multi-Agent(多智能体)AutoGen打造只有AI的软件公司。
2025-03-06 14:12:06
511
原创 用deepseek自动追热点写文章,躺着做自媒体不是梦
温习了一遍《爆款小红书》,突然悟了,只有爆款才能教出爆款,只有第一才能教出第一。也就是说,如果在这个基础上加入MultiAgent框架,赋予它策划、编辑、主任的职责,它就是一个编辑部。感觉写书感觉也不是很难了,调整了一下代码,只需要给一个标题《DeepSeek私有化部署实战》。让DeepSeek自己列目录,自己写文章,比我写的好,还比我写得快......当然,作为一名资深程序员,主打一个能用代码+AI解决的事情,绝不动手解决。如果他可以自己写,他应该也可以自己审查,审查出问题,打回去,让他自己重写。
2025-03-04 11:52:53
526
原创 记录编译Nerf-SLAM的过程
修改了/home/cici/nav2_ws/src/nerf_slam/NeRF-SLAM/thirdparty/instant-ngp/CMakeLists.txt。修改代码/home/cici/nav2_ws/src/nerf_slam/NeRF-SLAM/fusion/nerf_fusion.py。更改了Path没用,因为/usr/bin/nvcc 指向了toolkit下的nvcc。不行,在pytorch官网升级了版本,应该是cuda11.5与gcc11版本不兼容。需要更换显卡。
2023-11-21 15:24:11
304
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人