10分钟玩转PocketFlow:用100行代码掌握LLM核心设计模式
在LLM应用开发领域,设计模式的选择往往决定了开发效率与系统扩展性。今天我们将通过极简框架PocketFlow(仅100行代码),快速实现六大核心设计模式。以下操作均可在Jupyter Notebook或任意Python IDE中完成,所有代码总量不超过100行。
一、环境准备(2分钟)
1. 安装框架
pip install pocketflow # 56KB无依赖包,安装即用
2. 核心概念速览
- 节点(Node):独立功能单元(如调用LLM、执行工具)
- 流(Flow):由节点组成的有向执行图
- 共享存储(Shared Store):全局状态管理容器(Python字典)
二、六大设计模式实战(8分钟)
1. 基础聊天模式(对话记忆)
实现效果:自动维护对话上下文
from pocketflow import Node, Flow
class ChatNode(Node):
def prep(self, shared):
return {"history": shared.get("history", [])} # 读取对话历史
def exec(self, inputs):
response = call_llm(f"历史对话:{inputs['history']}\n用户新消息:{inputs['query']}")
return {"answer": response}
def post(self, shared, _, exec_res):
shared.setdefault("history", []).append(exec_res["answer"]) # 更新历史
chat_flow = Flow(start=ChatNode())
# 使用:chat_flow.run({"query": "你好!"})
2. 智能体模式(决策-行动循环)
特点:通过分支实现ReAct模式
class AgentCore(Node):
def exec(self, shared):
thought = call_llm(f"当前状态:{shared['state']},请决策下一步行动")
if "需要搜索" in thought:
return {"action": "search", "query": extract_keyword(thought)}
else:
return {"action": "answer"}
class SearchNode(Node):
def exec(self, inputs):
return web_search(inputs["query"])
agent_flow = (Flow()
.add(AgentCore())
.branch(
("search", Flow().add(SearchNode()).link_back_to(AgentCore())),
("answer", AnswerNode())
))
3. 工作流模式(多阶段内容生成)
应用场景:文档生成、报告自动化
class OutlineNode(Node):
def exec(self, topic):
return call_llm(f"生成《{topic}》大纲")
class DraftNode(Node):
def exec(self, outline):
return call_llm(f"根据大纲写作:{outline}")
class StyleNode(Node):
def exec(self, draft):
return call_llm(f"将文本转为正式风格:{draft}")
writing_flow = Flow(
OutlineNode() >> DraftNode() >> StyleNode()
)
4. RAG模式(检索增强生成)
扩展技巧:添加缓存节点提升性能
class RetrieverNode(Node):
def exec(self, query):
return vector_db.search(query)
class GeneratorNode(Node):
def exec(self, context):
return call_llm(f"基于以下内容回答:{context}")
rag_flow = Flow(
RetrieverNode() >> GeneratorNode()
)
5. 并行处理模式(Map-Reduce)
性能提升:翻译速度提升300%
class TranslateNode(Node):
def exec(self, text):
return parallel_translate(text, ["en", "ja", "es"])
class AggregateNode(Node):
def exec(self, results):
return {"translations": results}
parallel_flow = Flow(
TranslateNode().parallel(workers=3) >> AggregateNode()
)
6. 监督流程模式(人工审核介入)
安全机制:异常自动转人工审批
class HumanCheckNode(Node):
def exec(self, content):
if sensitive_check(content):
raise HumanIntervention("内容需人工审核")
return content
supervised_flow = Flow(
DraftNode() >> HumanCheckNode() >> PublishNode()
)
三、智能编码加速(Bonus)
通过Agentic Coding模式,用自然语言生成复杂流:
# 向AI助手输入提示:
"""
请用PocketFlow实现一个多智能体辩论系统:
- 生成两个持对立观点的Agent
- 每个Agent需引用权威资料
- 最后生成总结报告
"""
AI将自动生成节点连接逻辑与共享存储结构
四、设计模式组合实践
将上述模式组合构建复杂系统:
advanced_flow = Flow(
WebSearchAgent()
>> (RAGFlow() | CacheNode()).parallel()
>> DebateFlow(max_rounds=3)
>> ReportGenerator()
)
典型应用:竞品分析系统、学术论文辅助写作
结语
PocketFlow通过极简的图抽象(100行核心代码),将LLM开发复杂度压缩到传统框架的1/10。开发者只需关注节点功能定义与流拓扑设计,其余细节可交由AI智能体实现。这种"人类架构师+AI工程师"的协作范式,正在重新定义LLM应用开发的生产力边界。
立即体验:
- GitHub源码:github.com/The-Pocket/PocketFlow
- 完整案例库:pocketflow.substack.com