10分钟入门LLM应用:用PocketFlow的100行代码玩转LLM核心设计模式

10分钟玩转PocketFlow:用100行代码掌握LLM核心设计模式

在LLM应用开发领域,设计模式的选择往往决定了开发效率与系统扩展性。今天我们将通过极简框架PocketFlow(仅100行代码),快速实现六大核心设计模式。以下操作均可在Jupyter Notebook或任意Python IDE中完成,所有代码总量不超过100行。

一、环境准备(2分钟)

1. 安装框架

pip install pocketflow  # 56KB无依赖包,安装即用

2. 核心概念速览

  • 节点(Node):独立功能单元(如调用LLM、执行工具)
  • 流(Flow):由节点组成的有向执行图
  • 共享存储(Shared Store):全局状态管理容器(Python字典)

二、六大设计模式实战(8分钟)

1. 基础聊天模式(对话记忆)

实现效果:自动维护对话上下文

from pocketflow import Node, Flow

class ChatNode(Node):
    def prep(self, shared):
        return {"history": shared.get("history", [])}  # 读取对话历史
    
    def exec(self, inputs):
        response = call_llm(f"历史对话:{inputs['history']}\n用户新消息:{inputs['query']}")
        return {"answer": response}
    
    def post(self, shared, _, exec_res):
        shared.setdefault("history", []).append(exec_res["answer"])  # 更新历史

chat_flow = Flow(start=ChatNode())
# 使用:chat_flow.run({"query": "你好!"})

2. 智能体模式(决策-行动循环)

特点:通过分支实现ReAct模式

class AgentCore(Node):
    def exec(self, shared):
        thought = call_llm(f"当前状态:{shared['state']},请决策下一步行动")
        if "需要搜索" in thought:
            return {"action": "search", "query": extract_keyword(thought)}
        else:
            return {"action": "answer"}

class SearchNode(Node):
    def exec(self, inputs):
        return web_search(inputs["query"])

agent_flow = (Flow()
    .add(AgentCore())
    .branch(
        ("search", Flow().add(SearchNode()).link_back_to(AgentCore())),
        ("answer", AnswerNode())
    ))

3. 工作流模式(多阶段内容生成)

应用场景:文档生成、报告自动化

class OutlineNode(Node):
    def exec(self, topic):
        return call_llm(f"生成《{topic}》大纲")

class DraftNode(Node):
    def exec(self, outline):
        return call_llm(f"根据大纲写作:{outline}")

class StyleNode(Node):
    def exec(self, draft):
        return call_llm(f"将文本转为正式风格:{draft}")

writing_flow = Flow(
    OutlineNode() >> DraftNode() >> StyleNode()
)

4. RAG模式(检索增强生成)

扩展技巧:添加缓存节点提升性能

class RetrieverNode(Node):
    def exec(self, query):
        return vector_db.search(query)

class GeneratorNode(Node):
    def exec(self, context):
        return call_llm(f"基于以下内容回答:{context}")

rag_flow = Flow(
    RetrieverNode() >> GeneratorNode()
)

5. 并行处理模式(Map-Reduce)

性能提升:翻译速度提升300%

class TranslateNode(Node):
    def exec(self, text):
        return parallel_translate(text, ["en", "ja", "es"])

class AggregateNode(Node):
    def exec(self, results):
        return {"translations": results}

parallel_flow = Flow(
    TranslateNode().parallel(workers=3) >> AggregateNode()
)

6. 监督流程模式(人工审核介入)

安全机制:异常自动转人工审批

class HumanCheckNode(Node):
    def exec(self, content):
        if sensitive_check(content):
            raise HumanIntervention("内容需人工审核")
        return content

supervised_flow = Flow(
    DraftNode() >> HumanCheckNode() >> PublishNode()
)

三、智能编码加速(Bonus)

通过Agentic Coding模式,用自然语言生成复杂流:

# 向AI助手输入提示:
"""
请用PocketFlow实现一个多智能体辩论系统:
- 生成两个持对立观点的Agent
- 每个Agent需引用权威资料
- 最后生成总结报告
"""

AI将自动生成节点连接逻辑与共享存储结构

四、设计模式组合实践

将上述模式组合构建复杂系统:

advanced_flow = Flow(
    WebSearchAgent() 
    >> (RAGFlow() | CacheNode()).parallel() 
    >> DebateFlow(max_rounds=3)
    >> ReportGenerator()
)

典型应用:竞品分析系统、学术论文辅助写作

结语

PocketFlow通过极简的图抽象(100行核心代码),将LLM开发复杂度压缩到传统框架的1/10。开发者只需关注节点功能定义流拓扑设计,其余细节可交由AI智能体实现。这种"人类架构师+AI工程师"的协作范式,正在重新定义LLM应用开发的生产力边界。

立即体验:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值