数学分析必背基础公式

摘要: 这是笔者大一学习数学分析时整理自用的基础公式集锦,所有公式分门别类,涵盖了泰勒展开、积分、三角函数、常微分方程等板块,并在必要处点明了公式间的联系和推导。

一. 泰勒展开

基础展开式:

e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) = ∑ n = 0 ∞ x n n ! , n ∈ R e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+o(x^3)=\sum_{n=0}^{\infin}\frac{x^n}{n!},n\in R ex=1+x+2!1x2+3!1x3+o(x3)=n=0n!xn,nR

sin ⁡ x = x − 1 3 ! x 3 + 1 5 ! x 5 + o ( x 6 ) = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 , x ∈ R \sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5+o(x^6)=\sum_{n=0}^{\infin}\frac{(-1)^n}{(2n+1)!}x^{2n+1},x\in R sinx=x3!1x3+5!1x5+o(x6)=n=0(2n+1)!(1)nx2n+1,xR

( 1 + x ) α = 1 + α x + 1 2 ! α ( α − 1 ) x 2 + o ( x 3 ) = ∑ n = 0 ∞ ( α n ) x n , x ∈ ( − 1 , 1 ) (1+x)^\alpha=1+\alpha x+\frac{1}{2!}\alpha(\alpha-1)x^2+o(x^3)=\sum_{n=0}^{\infin}\begin{pmatrix}\alpha \\ n \end{pmatrix}x^n,x\in(-1,1) (1+x)α=1+αx+2!1α(α1)x2+o(x3)=n=0(αn)xn,x(1,1)

1 1 − x = 1 + x + x 2 + x 3 + . . . + x n + o ( x n ) = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) \frac{1}{1-x}=1+x+x^2+x^3+...+x^n+o(x^n)=\sum_{n=0}^{\infin}x^n,x\in(-1,1) 1x1=1+x+x2+x3+...+xn+o(xn)=n=0xn,x(1,1)

外推展开式:

cos ⁡ x = ( sin ⁡ x ) ’ = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! ( x 2 n + 1 ) ′ , x ∈ R \cos x=(\sin x)’=\sum_{n=0}^{\infin}\frac{(-1)^n}{(2n+1)!}(x^{2n+1})',x\in R cosx=(sinx)=n=0(2n+1)!(1)n(x2n+1),xR

arctan ⁡ x = ∫ 0 x 1 1 + t 2 d x = ∑ n = 0 ∞ ∫ 0 x ( − t 2 ) n d t , x ∈ ( − 1 , 1 ) \arctan x=\int_0^{x}\frac{1}{1+t^2}\mathrm{d}x=\sum_{n=0}^{\infin}\int_0^{x}(-t^2)^n\mathrm{d}t,x\in(-1,1) arctanx=0x1+t21dx=n=00x(t2)ndt,x(1,1)

arcsin ⁡ x = ∫ 0 x ( 1 − t 2 ) − 1 2 d t = ∑ n = 0 ∞ ( − 1 2 n ) ∫ 0 x ( − t 2 ) n d t , x ∈ ( − 1 , 1 ) \arcsin x=\int_0^x(1-t^2)^{-\frac{1}{2}}\mathrm{d}t=\sum_{n=0}^{\infin} \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} \int_0^{x}(-t^2)^n\mathrm{d}t,x\in(-1,1) arcsinx=0x(1t2)21dt=n=0(21n)0x(t2)ndt,x(1,1)

arccos ⁡ x = 2 π − arcsin ⁡ x \arccos x=\frac{2}{\pi}-\arcsin x arccosx=π2arcsinx

ln ⁡ ( 1 + x ) = ∫ 0 x 1 1 + t d t = ∑ n = 0 ∞ ∫ 0 x ( − t ) n d t , x ∈ ( − 1 , 1 ) \ln(1+x)=\int_0^{x}\frac{1}{1+t}\mathrm{d}t=\sum_{n=0}^{\infin}\int_0^x(-t)^n\mathrm{d}t,x\in(-1,1) ln(1+x)=0x1+t1dt=n=00x(t)ndt,x(1,1)

其它常用泰勒公式:

tan ⁡ x = x + 1 3 x 3 + 2 15 x 5 + o ( x 6 ) \tan x=x+\frac{1}{3}x^3+\frac{2}{15}x^5+o(x^6) tanx=x+31x3+152x5+o(x6)

二. 积分

∫ 1 1 + x 2 d x = arctan ⁡ x + C \int\frac{1}{1+x^2}dx=\arctan x+C 1+x21dx=arctanx+C

∫ 1 1 − x 2 d x = 1 2 ln ⁡ ∣ 1 + x 1 − x ∣ + C \int\frac{1}{1-x^2}dx=\frac{1}{2}\ln|\frac{1+x}{1-x}|+C 1x21dx=21ln1x1+x+C

∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C 1x2 1dx=arcsinx+C

∫ 1 x 2 ± 1 d x = ln ⁡ ∣ x + x 2 ± 1 ∣ + C \int\frac{1}{\sqrt{x^2\pm1}}dx=\ln\mid x+\sqrt{x^2\pm1}\mid+C x2±1 1dx=lnx+x2±1 +C

∫ 1 sin ⁡ 2 x d x = ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int\frac{1}{\sin^2x}dx=\int\csc^2xdx=-\cot x+C sin2x1dx=csc2xdx=cotx+C

∫ 1 sin ⁡ x d x = ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int\frac{1}{\sin x}dx=\int\csc xdx=\ln|\csc x-\cot x|+C sinx1dx=cscxdx=lncscxcotx+C

∫ 1 cos ⁡ 2 x d x = ∫ sec ⁡ 2 x d x = tan ⁡ x + C \int\frac{1}{\cos^2x}dx=\int\sec ^2xdx=\tan x+C cos2x1dx=sec2xdx=tanx+C

∫ 1 c o s x d x = ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int\frac{1}{cos x}dx=\int\sec xdx=\ln|\sec x+\tan x|+C cosx1dx=secxdx=lnsecx+tanx+C

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^b f(x)dx=\int_a^b f(a+b-x)dx abf(x)dx=abf(a+bx)dx

I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 1 2 ⋅ π 2 , n 为偶数时 n − 1 n ⋅ n − 3 n − 2 ⋅ . . . ⋅ 2 3 ⋅ 1 , n 为奇数时 I_n=\int_0^\frac{\pi}{2}\sin^nxdx=\int_0^\frac{\pi}{2}\cos^nxdx= \begin{cases} \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{1}{2}\cdot\frac{\pi}{2}, n为偶数时 \\ \frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot...\cdot\frac{2}{3}\cdot1, n为奇数时 \end{cases} In=02πsinnxdx=02πcosnxdx={nn1n2n3...212π,n为偶数时nn1n2n3...321,n为奇数时

三. 三角函数公式

半角变换

sin ⁡ α = 2 tan ⁡ α x 1 + tan ⁡ 2 α 2 \sin \alpha=\frac{2\tan\frac{\alpha}{x}}{1+\tan^2\frac{\alpha}{2}} sinα=1+tan22α2tanxα

cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos \alpha=\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} cosα=1+tan22α1tan22α

四. 莱布尼茨公式

[ f ( x ) ⋅ g ( x ) ] ( n ) = Σ k = 0 n C n k f ( k ) ( x ) ⋅ g ( n − k ) ( x ) [f(x)\cdot g(x)]^{(n)}=\Sigma_{k=0}^{n}C_n^kf^{(k)}(x)\cdot g^{(n-k)}(x) [f(x)g(x)](n)=Σk=0nCnkf(k)(x)g(nk)(x)

五. 常微分方程

  1. y ′ + p ( x ) y = Q ( x ) y^{'}+p(x)y=Q(x) y+p(x)y=Q(x)通解:

y = e − ∫ p ( x ) d x [ C + ∫ Q ( x ) ⋅ e ∫ p ( x ) d x d x ] y=e^{-\int p(x)dx}[C+\int Q(x)\cdot e^{\int p(x)dx}dx] y=ep(x)dx[C+Q(x)ep(x)dxdx]

  1. 刘维尔公式(已知二阶线性齐次微分方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y^{''} +p(x)y^{'}+q(x)y=0 y′′+p(x)y+q(x)y=0的一个特解 y 1 y_1 y1,求另一个特解 y 2 y_2 y2

y 2 = y x ∫ e − ∫ p ( x ) d x y 1 2 d x y_2=y_x \int\frac{ e^{-\int p(x) dx} }{y_1^2}dx y2=yxy12ep(x)dxdx

  1. 二届线性非齐次微分方程 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y^{''} +p(x)y^{'}+q(x)y=f(x) y′′+p(x)y+q(x)y=f(x)的特解(已知齐次方程两个通解):

y ∗ = − y 1 ∫ y 2 f ( x ) v ( y 1 , y 2 ) d x + y 2 ∫ y 1 f ( x ) v ( y 1 , y 2 ) d x y^*=-y_1\int\frac{y_2f(x)}{v(y_1,y_2)}dx+y_2\int\frac{y_1f(x)}{v(y_1,y_2)}dx y=y1v(y1,y2)y2f(x)dx+y2v(y1,y2)y1f(x)dx

​ 其中伏朗斯基行列式:
v ( y 1 , y 2 ) = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = y 1 y 2 ′ − y 2 y 1 ′ v(y_1,y_2)= \left| \begin{matrix} y_1 && y_2\\ y_1^{'} && y_2^{'} \end{matrix}\right| =y_1y_2^{'}-y_2y_1^{'} v(y1,y2)= y1y1y2y2 =y1y2y2y1

  1. 欧拉公式:

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ

  1. 二阶线性非齐次方程自由项 f ( x ) = P m ( x ) e λ x f(x)=P_m (x)e^{\lambda x} f(x)=Pm(x)eλx时特解的形式:

y ∗ = x k Q m ( x ) e λ x y^*=x^k Q_m (x)e^{\lambda x} y=xkQm(x)eλx

​ 自由项 f ( x ) = P m ( x ) e λ x sin ⁡ β x f(x)=P_m (x) e^{\lambda x} \sin\beta x f(x)=Pm(x)eλxsinβx P m ( x ) e λ x cos ⁡ β x P_m (x) e^{\lambda x} \cos\beta x Pm(x)eλxcosβx时特解的形式:
y ∗ = x k [ Q m ( x ) cos ⁡ β x + R m ( x ) sin ⁡ β x ] e λ x y^*=x^k[Q_m (x)\cos\beta x+R_m (x)\sin\beta x]e^{\lambda x} y=xk[Qm(x)cosβx+Rm(x)sinβx]eλx
​ 其中k为与 λ \lambda λ相等的特征根个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张向南zhangxn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值