数学分析常用公式(收藏向)

不等式

伯努利不等式

x > − 1 x>-1 x>1 ,则不等式
( 1 + x ) n ≥ 1 + n x ( x > 1 ) (1.1.1) (1+x)^n \geq 1+nx\qquad (x>1)\tag{1.1.1} (1+x)n1+nx(x>1)(1.1.1)
为真,且当 x = 0 x=0 x=0 时,等式成立。

注:

  1. − 2 ≤ x ≤ − 1 -2\leq x\leq -1 2x1 时, ( 1.1 ) (1.1) (1.1) 式仍然成立
  2. 一般的,不等式
    ( 1 + x 1 ) ( 1 + x 2 ) ⋯ ( 1 + x n ) ≥ 1 + x 1 + x 2 + ⋯ + x n (1.1.2) (1+x_1)(1+x_2)\cdots (1+x_n)\geq1+x_1+x_2+\cdots+x_n\tag{1.1.2} (1+x1)(1+x2)(1+xn)1+x1+x2++xn(1.1.2)
    成立。其中, x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是符号相同且大于 − 1 -1 1 的数。

证明思路: 数学归纳法

三点不等式(三角不等式)

∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ (1.2.1) |x+y|\le|x|+|y|\tag {1.2.1} x+yx+y(1.2.1)
**证明思路:**数形结合
∣ x + y ∣ ≥ ∣ x ∣ − ∣ y ∣ (1.2.2) |x+y|\ge|x|-|y|\tag{1.2.2} x+yxy(1.2.2)
证明思路:(1.2.1)简单变形

三点不等式(三角不等式)的推广

∣ x − y ∣ ≥ ∣ ∣ x ∣ − ∣ y ∣ ∣ (1.2.3) |x-y|\ge||x|-|y||\tag{1.2.3} xyxy(1.2.3)
证明思路: 分解成两个不等式, ∣ x − y ∣ ≥ ∣ x ∣ − ∣ y ∣ |x-y|\ge|x|-|y| xyxy, ∣ x − y ∣ ≥ ∣ y ∣ − ∣ x ∣ |x-y|\ge|y|-|x| xyyx,利用(1.2.1)(1.2.2)简单变形得到。
∣ x + x 1 + ⋯ + x n ∣ ≥ ∣ x ∣ − ( ∣ x 1 ∣ + ⋯ + ∣ x n ∣ ) (1.2.4) |x+x_1+\cdots+x_n|\ge|x|-(|x_1|+\cdots+|x_n|)\tag{1.2.4} x+x1++xnx(x1++xn)(1.2.4)
证明思路: 数学归纳法

Jensen 不等式(琴生不等式)(詹森不等式)

f f f 是定义在区间 I I I 上的函数,则 f f f 为凸函数当且仅当对任意的 x i ∈ I , λ i ≥ 0 ( i = 1 , 2 , ⋯   , n ) , ∑ i = 1 n λ = 1 x_i\in I,\lambda_i\ge0(i=1,2,\cdots,n),\sum_{i=1}^n\lambda = 1 xiI,λi0(i=1,2,,n),i=1nλ=1,有:
f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) . (1.3.1) f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i).\tag{1.3.1} f(i=1nλixi)i=1nλif(xi).(1.3.1)
证明思路: 数学归纳法

Schwarz 不等式(柯西–施瓦茨不等式)

x , y ∈ R n x,y\in R^n x,yRn
⟨ x , y ⟩ 2 ≤ ∣ ∣ x ∣ ∣ ⋅ ∣ ∣ y ∣ ∣ (1.4.1) \langle x,y\rangle^2 \le||x||·||y||\tag{1.4.1} x,y2xy(1.4.1)
证明思路: 考虑不等式 ⟨ λ x + y , λ x + y ⟩ ≥ 0 \langle \lambda x+y,\lambda x+y\rangle\ge0 λx+y,λx+y0恒成立
推广到矩阵:
A = ( a i j ) l × m A=(a_{ij})_{l\times m} A=(aij)l×m , B = ( b i j ) m × n B=(b_{ij})_{m\times n} B=(bij)m×n
∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ (1.4.2) ||AB|| \le||A||\cdot||B||\tag{1.4.2} ABAB(1.4.2)



等式

杨辉恒等式

C n + 1 k = C n k + C n k − 1 (2.1.1) C_{n+1}^{k}=C_n^k+C_n^{k-1}\tag{2.1.1} Cn+1k=Cnk+Cnk1(2.1.1)
证明思路: C m n = m ! n ! ( m − n ) ! C_m^n=\frac{m!}{n!(m-n)!} Cmn=n!(mn)!m!

幂方差公式

a n − b n = ( a − b ) ∑ i n − 1 a i b n − i − 1 (2.2.1) a^n-b^n = (a-b)\sum_{i}^{n-1}a^{i}b^{n-i-1}\tag{2.2.1} anbn=(ab)in1aibni1(2.2.1)
证明思路: ∑ \sum 拆开

Stirling公式(斯特林公式)

lim ⁡ n → ∞ n ! 2 π n ( n / e ) n = 1 (2.3.1) \lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}\left(n/e\right)^n}= 1\tag{2.3.1} nlim2πn (n/e)nn!=1(2.3.1)
证明思路: 单调有界必收敛,Wallis公式

Wallis公式

lim ⁡ n → ∞ ( ( 2 n ) ! ! ( 2 n − 1 ) ! ! ) 2 1 2 n + 1 = π 2 (4.1.1) \lim_{n\to\infty}\left(\frac{(2n)!!}{(2n-1)!!}\right)^2\frac{1}{2n+1}=\frac{\pi}{2}\tag{4.1.1} nlim((2n1)!!(2n)!!)22n+11=2π(4.1.1)
证明思路: 考虑不等式 ∫ 0 π / 2 sin ⁡ 2 k + 1 x < ∫ 0 π / 2 sin ⁡ 2 k x < ∫ 0 π / 2 sin ⁡ 2 k − 1 x \int_0^{\pi/2} \sin^{2k+1}x<\int_0^{\pi/2} \sin^{2k}x<\int_0^{\pi/2} \sin^{2k-1}x 0π/2sin2k+1x<0π/2sin2kx<0π/2sin2k1x
简单变形:
lim ⁡ n → ∞ ( n ! ) 2 2 2 n ( 2 n ) ! n = π (2.4.2) \lim_{n\to\infty}\frac{(n!)^22^{2n}}{(2n)!\sqrt{n}}=\sqrt{\pi}\tag{2.4.2} nlim(2n)!n (n!)222n=π (2.4.2)
( 2 n ) ! ! ( 2 n − 1 ) ! ! ∼ π n (2.4.3) \frac{(2n)!!}{(2n-1)!!}\sim\sqrt{\pi n}\tag{2.4.3} (2n1)!!(2n)!!πn (2.4.3)

sin ⁡ n ( x ) \sin^n(x) sinn(x) 0 0 0 π / 2 \pi/2 π/2 处的积分

∫ 0 π / 2 sin ⁡ n φ d φ = { ( 2 m − 1 ) ! ! ( 2 m ) ! ! ⋅ π 2 , n = 2 m ( 2 m ) ! ! ( 2 m + 1 ) ! ! , ⋅ π n = 2 m + 1 (2.5) \int_0^{\pi/2}\sin^n\varphi d\varphi=\left\{ \begin{aligned} \frac{(2m-1)!!}{(2m)!!}\cdot\frac{\pi}{2},\qquad&n=2m\\ \frac{(2m)!!}{(2m+1)!!},\qquad\phantom{\cdot\frac{\pi}{}}&n=2m+1\end{aligned}\right. \tag{2.5} 0π/2sinnφdφ=(2m)!!(2m1)!!2π,(2m+1)!!(2m)!!,πn=2mn=2m+1(2.5)
证明思路: ∫ 0 π / 2 sin ⁡ n φ d φ = − ∫ 0 π / 2 sin ⁡ n − 1 φ d cos ⁡ ( φ ) \int_0^{\pi/2}\sin^n\varphi d\varphi=-\int_0^{\pi/2}\sin^{n-1}\varphi d\cos(\varphi) 0π/2sinnφdφ=0π/2sinn1φdcos(φ),简单计算之后最终得到: I n = ( n − 1 ) ( I n − 2 − I n ) I_n=(n-1)(I_{n-2}-I_n) In=(n1)(In2In)

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 (2.6) \begin{aligned} \sin \alpha+\sin \beta&=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\ \sin \alpha-\sin \beta&=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\\ \cos \alpha+\cos \beta&=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\ \cos \alpha-\cos \beta&=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\\ \end{aligned}\tag{2.6} sinα+sinβsinαsinβcosα+cosβcosαcosβ=2sin2α+βcos2αβ=2cos2α+βsin2αβ=2cos2α+βcos2αβ=2sin2α+βsin2αβ(2.6)

积化和差

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{aligned} \sin \alpha \cos \beta&=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\ \cos \alpha \sin \beta&=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\ \cos \alpha \cos \beta&=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\ \sin \alpha \sin \beta&=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \end{aligned} sinαcosβcosαsinβcosαcosβsinαsinβ=21[sin(α+β)+sin(αβ)]=21[sin(α+β)sin(αβ)]=21[cos(α+β)+cos(αβ)]=21[cos(α+β)cos(αβ)]

海伦公式

S = p ( p − a ) ( p − b ) ( p − c ) (2.7) S=\sqrt{p(p-a)(p-b)(p-c)}\tag{2.7} S=p(pa)(pb)(pc) (2.7)
其中
P = a + b + c 2 P=\frac{a+b+c}{2} P=2a+b+c

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值