数学分析常用公式(收藏向)
不等式
伯努利不等式
若
x
>
−
1
x>-1
x>−1 ,则不等式
(
1
+
x
)
n
≥
1
+
n
x
(
x
>
1
)
(1.1.1)
(1+x)^n \geq 1+nx\qquad (x>1)\tag{1.1.1}
(1+x)n≥1+nx(x>1)(1.1.1)
为真,且当
x
=
0
x=0
x=0 时,等式成立。
注:
- 当 − 2 ≤ x ≤ − 1 -2\leq x\leq -1 −2≤x≤−1 时, ( 1.1 ) (1.1) (1.1) 式仍然成立
- 一般的,不等式
( 1 + x 1 ) ( 1 + x 2 ) ⋯ ( 1 + x n ) ≥ 1 + x 1 + x 2 + ⋯ + x n (1.1.2) (1+x_1)(1+x_2)\cdots (1+x_n)\geq1+x_1+x_2+\cdots+x_n\tag{1.1.2} (1+x1)(1+x2)⋯(1+xn)≥1+x1+x2+⋯+xn(1.1.2)
成立。其中, x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn是符号相同且大于 − 1 -1 −1 的数。
证明思路: 数学归纳法
三点不等式(三角不等式)
∣
x
+
y
∣
≤
∣
x
∣
+
∣
y
∣
(1.2.1)
|x+y|\le|x|+|y|\tag {1.2.1}
∣x+y∣≤∣x∣+∣y∣(1.2.1)
**证明思路:**数形结合
∣
x
+
y
∣
≥
∣
x
∣
−
∣
y
∣
(1.2.2)
|x+y|\ge|x|-|y|\tag{1.2.2}
∣x+y∣≥∣x∣−∣y∣(1.2.2)
证明思路:(1.2.1)简单变形
三点不等式(三角不等式)的推广
∣
x
−
y
∣
≥
∣
∣
x
∣
−
∣
y
∣
∣
(1.2.3)
|x-y|\ge||x|-|y||\tag{1.2.3}
∣x−y∣≥∣∣x∣−∣y∣∣(1.2.3)
证明思路: 分解成两个不等式,
∣
x
−
y
∣
≥
∣
x
∣
−
∣
y
∣
|x-y|\ge|x|-|y|
∣x−y∣≥∣x∣−∣y∣,
∣
x
−
y
∣
≥
∣
y
∣
−
∣
x
∣
|x-y|\ge|y|-|x|
∣x−y∣≥∣y∣−∣x∣,利用(1.2.1)(1.2.2)简单变形得到。
∣
x
+
x
1
+
⋯
+
x
n
∣
≥
∣
x
∣
−
(
∣
x
1
∣
+
⋯
+
∣
x
n
∣
)
(1.2.4)
|x+x_1+\cdots+x_n|\ge|x|-(|x_1|+\cdots+|x_n|)\tag{1.2.4}
∣x+x1+⋯+xn∣≥∣x∣−(∣x1∣+⋯+∣xn∣)(1.2.4)
证明思路: 数学归纳法
Jensen 不等式(琴生不等式)(詹森不等式)
设
f
f
f 是定义在区间
I
I
I 上的函数,则
f
f
f 为凸函数当且仅当对任意的
x
i
∈
I
,
λ
i
≥
0
(
i
=
1
,
2
,
⋯
,
n
)
,
∑
i
=
1
n
λ
=
1
x_i\in I,\lambda_i\ge0(i=1,2,\cdots,n),\sum_{i=1}^n\lambda = 1
xi∈I,λi≥0(i=1,2,⋯,n),∑i=1nλ=1,有:
f
(
∑
i
=
1
n
λ
i
x
i
)
≤
∑
i
=
1
n
λ
i
f
(
x
i
)
.
(1.3.1)
f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i).\tag{1.3.1}
f(i=1∑nλixi)≤i=1∑nλif(xi).(1.3.1)
证明思路: 数学归纳法
Schwarz 不等式(柯西–施瓦茨不等式)
设
x
,
y
∈
R
n
x,y\in R^n
x,y∈Rn
⟨
x
,
y
⟩
2
≤
∣
∣
x
∣
∣
⋅
∣
∣
y
∣
∣
(1.4.1)
\langle x,y\rangle^2 \le||x||·||y||\tag{1.4.1}
⟨x,y⟩2≤∣∣x∣∣⋅∣∣y∣∣(1.4.1)
证明思路: 考虑不等式
⟨
λ
x
+
y
,
λ
x
+
y
⟩
≥
0
\langle \lambda x+y,\lambda x+y\rangle\ge0
⟨λx+y,λx+y⟩≥0恒成立
推广到矩阵:
设
A
=
(
a
i
j
)
l
×
m
A=(a_{ij})_{l\times m}
A=(aij)l×m ,
B
=
(
b
i
j
)
m
×
n
B=(b_{ij})_{m\times n}
B=(bij)m×n
∣
∣
A
B
∣
∣
≤
∣
∣
A
∣
∣
⋅
∣
∣
B
∣
∣
(1.4.2)
||AB|| \le||A||\cdot||B||\tag{1.4.2}
∣∣AB∣∣≤∣∣A∣∣⋅∣∣B∣∣(1.4.2)
等式
杨辉恒等式
C
n
+
1
k
=
C
n
k
+
C
n
k
−
1
(2.1.1)
C_{n+1}^{k}=C_n^k+C_n^{k-1}\tag{2.1.1}
Cn+1k=Cnk+Cnk−1(2.1.1)
证明思路:
C
m
n
=
m
!
n
!
(
m
−
n
)
!
C_m^n=\frac{m!}{n!(m-n)!}
Cmn=n!(m−n)!m!
幂方差公式
a
n
−
b
n
=
(
a
−
b
)
∑
i
n
−
1
a
i
b
n
−
i
−
1
(2.2.1)
a^n-b^n = (a-b)\sum_{i}^{n-1}a^{i}b^{n-i-1}\tag{2.2.1}
an−bn=(a−b)i∑n−1aibn−i−1(2.2.1)
证明思路: 把
∑
\sum
∑ 拆开
Stirling公式(斯特林公式)
lim
n
→
∞
n
!
2
π
n
(
n
/
e
)
n
=
1
(2.3.1)
\lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}\left(n/e\right)^n}= 1\tag{2.3.1}
n→∞lim2πn(n/e)nn!=1(2.3.1)
证明思路: 单调有界必收敛,Wallis公式
Wallis公式
lim
n
→
∞
(
(
2
n
)
!
!
(
2
n
−
1
)
!
!
)
2
1
2
n
+
1
=
π
2
(4.1.1)
\lim_{n\to\infty}\left(\frac{(2n)!!}{(2n-1)!!}\right)^2\frac{1}{2n+1}=\frac{\pi}{2}\tag{4.1.1}
n→∞lim((2n−1)!!(2n)!!)22n+11=2π(4.1.1)
证明思路: 考虑不等式
∫
0
π
/
2
sin
2
k
+
1
x
<
∫
0
π
/
2
sin
2
k
x
<
∫
0
π
/
2
sin
2
k
−
1
x
\int_0^{\pi/2} \sin^{2k+1}x<\int_0^{\pi/2} \sin^{2k}x<\int_0^{\pi/2} \sin^{2k-1}x
∫0π/2sin2k+1x<∫0π/2sin2kx<∫0π/2sin2k−1x
简单变形:
lim
n
→
∞
(
n
!
)
2
2
2
n
(
2
n
)
!
n
=
π
(2.4.2)
\lim_{n\to\infty}\frac{(n!)^22^{2n}}{(2n)!\sqrt{n}}=\sqrt{\pi}\tag{2.4.2}
n→∞lim(2n)!n(n!)222n=π(2.4.2)
(
2
n
)
!
!
(
2
n
−
1
)
!
!
∼
π
n
(2.4.3)
\frac{(2n)!!}{(2n-1)!!}\sim\sqrt{\pi n}\tag{2.4.3}
(2n−1)!!(2n)!!∼πn(2.4.3)
sin n ( x ) \sin^n(x) sinn(x) 在 0 0 0 到 π / 2 \pi/2 π/2 处的积分
∫
0
π
/
2
sin
n
φ
d
φ
=
{
(
2
m
−
1
)
!
!
(
2
m
)
!
!
⋅
π
2
,
n
=
2
m
(
2
m
)
!
!
(
2
m
+
1
)
!
!
,
⋅
π
n
=
2
m
+
1
(2.5)
\int_0^{\pi/2}\sin^n\varphi d\varphi=\left\{ \begin{aligned} \frac{(2m-1)!!}{(2m)!!}\cdot\frac{\pi}{2},\qquad&n=2m\\ \frac{(2m)!!}{(2m+1)!!},\qquad\phantom{\cdot\frac{\pi}{}}&n=2m+1\end{aligned}\right. \tag{2.5}
∫0π/2sinnφdφ=⎩⎪⎪⎪⎨⎪⎪⎪⎧(2m)!!(2m−1)!!⋅2π,(2m+1)!!(2m)!!,⋅πn=2mn=2m+1(2.5)
证明思路:
∫
0
π
/
2
sin
n
φ
d
φ
=
−
∫
0
π
/
2
sin
n
−
1
φ
d
cos
(
φ
)
\int_0^{\pi/2}\sin^n\varphi d\varphi=-\int_0^{\pi/2}\sin^{n-1}\varphi d\cos(\varphi)
∫0π/2sinnφdφ=−∫0π/2sinn−1φdcos(φ),简单计算之后最终得到:
I
n
=
(
n
−
1
)
(
I
n
−
2
−
I
n
)
I_n=(n-1)(I_{n-2}-I_n)
In=(n−1)(In−2−In)
和差化积
sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = − 2 sin α + β 2 sin α − β 2 (2.6) \begin{aligned} \sin \alpha+\sin \beta&=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\ \sin \alpha-\sin \beta&=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\\ \cos \alpha+\cos \beta&=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\ \cos \alpha-\cos \beta&=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}\\ \end{aligned}\tag{2.6} sinα+sinβsinα−sinβcosα+cosβcosα−cosβ=2sin2α+βcos2α−β=2cos2α+βsin2α−β=2cos2α+βcos2α−β=−2sin2α+βsin2α−β(2.6)
积化和差
sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α − β ) ] \begin{aligned} \sin \alpha \cos \beta&=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\ \cos \alpha \sin \beta&=\frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\ \cos \alpha \cos \beta&=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\ \sin \alpha \sin \beta&=-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)] \end{aligned} sinαcosβcosαsinβcosαcosβsinαsinβ=21[sin(α+β)+sin(α−β)]=21[sin(α+β)−sin(α−β)]=21[cos(α+β)+cos(α−β)]=−21[cos(α+β)−cos(α−β)]
海伦公式
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
(2.7)
S=\sqrt{p(p-a)(p-b)(p-c)}\tag{2.7}
S=p(p−a)(p−b)(p−c)(2.7)
其中
P
=
a
+
b
+
c
2
P=\frac{a+b+c}{2}
P=2a+b+c