数学分析

1.导数与梯度

1.1. 自然常数e

求S的值:

S=10+11+12+13+13+15++1n+

f(x)=logax ,求x=1时的斜率。
f(x)=f(x+x)f(x)x=loga(x+x)logaxx=loga(x+xx)x=loga(x+xx)1x
x=1时, f(x)=loga(1+x)1x , 令 f(x)=1 , 则 limx0(1+x)1x=a
即求: limn(1+1n)n

构造数列
xn=(1+1n)n
=1+C2n1n2+C3n1n3++Cnn1nn
=1+n1n+n(n1)21n2+n(n1)(n2)3!1n3++n(n1)(n2)1n!1nn
=1+1+12(11n)+13(11n)(12n)++1n!(11n)(12n)(1n1n)
<1+1+12!+13!++1n! <script type="math/tex" id="MathJax-Element-12"><1+1+\frac{1}{2!}+\frac{1}{3!}+···+\frac{1}{n!}</script>
<1+1+12+122++12n1 <script type="math/tex" id="MathJax-Element-13"><1+1+\frac{1}{2}+\frac{1}{2^2}+···+\frac{1}{2^{n-1}}</script>
=312n1
<3 <script type="math/tex" id="MathJax-Element-15"><3</script>
因此,数列 xn=(1+1n)n ,单调递增且有上界,数列必有极限,记做 e

(1+1n+1)n<(1+1x)x<(1+1n)n+1

limn(1+1n+1)n=limn(1+1n+1)n+11+1n+1=limn(1+1n+1)n+1limn(1+1n+1)=e1+0=e
limn(1+1n)n+1=limn((1+1n)n(1+1n))=limn(1+1n)nlimn(1+1n)=e(1+0)=e
根据两边加定理,函数 f(x)=(1+1x)xe

1.2. 导数

导数是曲线的斜率,是曲线快慢的反应。
二阶导数是斜率变化快慢的反应,表征曲线的凹凸性。
根据 limn(1+1x)x=e 可以得到函数 f(x)=lnx 的导数。
常用函数的导数

**
C=0 (xn)=nxn1
(sinx)=cosx (cosx)=sinx
(ax)=axlna (ex)=ex
(logax)=1xlogae (lnx)=1x
(u+v)=u+v (uv)=uv+uv
1.3. 导数的应用
  1. 已知函数 f(x)=xx,x>0 ,求f(x)的最小值。
    t=xxlnt=xlnx
    两边同时求导得: 1tt=lnx+1
    t=0 ,得 lnx+1=0 x=e1,t=e1e
    再对t求二阶导可得在 x=e1 处,t”>0.
    因此在 x=e1 时,f(x)有最小值 e1e
  2. N 时,求 lnN!
    lnN!=Ni=1lnNN1lnxdx=xlnx|N1N1xdlnx=NlnNx|N1=NlnNN+1NlnNN

2.Taylor展开的应用

Taylor公式:
f(x)=f(x0)+f(x0)(xx0)+f′′(xo)2!(xx0)2++f(n)(x0)n!(xx0)n+Rn(x)
Maclaurin公式:
f(x)=f(0)+f(0)x+f′′(0)2!x2++f(n)n!xn+o(xn)

3.方向导数与梯度

3.1.方向导数

如果函数z=f(x,y)在点P(x,y)是可微分的,那么,函数在该点沿任一方向L的方向导数都存在,且有:

fl=fxcosϕ+fysinϕ

其中 ϕ 是X轴到方向L的转角

3.2.梯度

设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,则对于每一个点 P(x,y)D ,向量 (fx,fy) 为函数z=f(x,y)在点P的梯度,记做 gradf(x,y)
梯度的方向是函数在该点变化最快的方向。至于原因以下这篇可以参考以下这篇博客:https://zhuanlan.zhihu.com/p/24913912

3.3.Gamma函数

Γ 函数是阶乘在实数域的推广

Γ(x)=+0tx1etdt=(x1)!

Γ(x)=+0tx1etdt=+0tx1det
=tx1et|+0++0(x1)tx2etdt
=0+(x1)+0tx2etdt
=(x1)Γ(x1)
Γ(1)=+0t11etdt=+0etdt=et|+0=1

4.凸函数

4.1.凸函数定义:

若函数f的定义域domf为凸集,且满足
x,ydomf,0θ1 , f(θx+(1θ)y)θf(x)+(1θ)f(y)
凸函数

4.2.一阶可微(凸函数的充要条件)

若f一阶可微,则函数f为凸函数当前仅当f的定义域domf为凸集,且
x,ydomf,f(y)f(x)+f(x)T(yx)

一阶可微

4.3. 二阶可微

若函数f二阶可微,则函数f为凸函数当且仅当dom为凸集,且

2f(x)0

  • 若f是一元函数,上式表示二阶导大于等于0。
  • 若f是多元函数,上式表示二阶导Hessian矩阵半正定。

f(x,y)=3x2+4y2xy

fx=6xyfy=8yx

f(x)=[6xy8yx]

Hessian矩阵:
H=2fx22fyx2fxy2fy2

2f=[6118]

正定是正数在n阶域的推广。

4.4常见凸函数
  • 指数函数 f(x)=eax
  • 幂函数 f(x)=xa,xR+,a1a0
  • 负对数函数 f(x)=lnx
  • 负熵函数 f(x)=xlnx
  • 范数函数 f(x⃗ )=||x||
  • 最大值函数 f(x⃗ )=max(x1,x2,,xn)
  • 指数线性函数 f(x⃗ )=log(ex1+ex2++exn)
  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值