学习相关网址:
知乎fasttext原理介绍:https://zhuanlan.zhihu.com/p/32965521
机器不学习:FastText入门与实战:https://baijiahao.baidu.com/s?id=1607951833437361172&wfr=spider&for=pc
文本特征工程之N-Gram:https://blog.csdn.net/m0epNwstYk4/article/details/78861537
fasttext的词向量表征:https://blog.csdn.net/chenweihua556/article/details/73381608
内容部分:
fastText结合了自然语言处理和机器学习中最成功的理念。这些包括了使用词袋以及n-gram袋表征语句(利用n-gram特征中的词序特征来补充词袋模型中词的无序),还有使用子字(subword)信息,并通过隐藏表征在类别间共享信息。我们另外采用了一个softmax层级(利用了类别不均衡分布的优势)来加速运算过程。
主要用于两个任务:
有效文本分类:有监督学习
学习次向量表征:无监督学习
模型架构:
类似于word2vec中的cbow模型类似:
fastText 模型输入一个词的序列(一段文本或者一句话),输出这个词序列属于不同类别的概率。
序列中的词和词组组成特征向量,特征向量通过线性变换映射到中间层,中间层再映射到标签。
fastText 在预测标签时使用了非线性激活函数,但在中间层不使用非线性激活函数。fastText 模型架构和 Word2Vec 中的 CBOW 模型很类似。不同之处在于,fastText 预测标签,而 CBOW 模型预测中间词。
层次softmax:
对于大量类别的的数据集采用分层分类器,将不同类别整合在数结构中,使用层次softmax技巧,对白哦前进行编码,极大缩小目标预测的数量。