深入探索AwaDB:基于LLM应用的AI本地数据库

# 引言

随着大语言模型(LLM)的广泛应用,存储和搜索嵌入向量的需求日益增加。AwaDB是一种专门用于此目的的AI本地数据库。在这篇文章中,我们将探讨如何使用AwaEmbeddings与LangChain库结合实现嵌入向量的搜索和存储。

# 主要内容

## AwaEmbeddings简介

AwaEmbeddings是LangChain社区提供的一个模块,用于与AwaDB交互。它支持各种嵌入模型,默认使用`all-mpnet-base-v2`模型进行嵌入向量生成。

## 安装AwaDB

首先,确保你已经安装了AwaDB库:

```bash
pip install awadb

如何设置嵌入模型

AwaEmbeddings允许用户通过set_model()方法来指定嵌入模型。你可以从支持的模型列表中选择合适的模型。

from langchain_community.embeddings import AwaEmbeddings

# 初始化AwaEmbeddings对象
Embedding = AwaEmbeddings()

# 设置嵌入模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值