引言
随着生成式AI的快速发展,企业正在寻找高效的解决方案来利用自身数据创建类似ChatGPT的体验。Vectara提供了一种创新的方式,即RAG(Retrieval-Augmented-Generation)即服务。本篇文章将介绍如何使用Vectara平台构建AI助手,探索其核心功能和实用技巧。
主要内容
Vectara概述
Vectara提供了一个完整的RAG平台,包含以下组件:
- 文本提取:支持多种文件格式(PDF, PPT, DOCX等)。
- ML分块:提供最先进的文本分块技术。
- Boomerang嵌入模型:实现高效的文本和查询嵌入。
- 矢量数据库:储存文本块及其对应的嵌入向量。
- 查询服务:自动编码查询并检索最相关的文本片段。
- 生成式总结:基于检索到的文档生成总结并附加引用。
Vectara安装和设置
使用Vectara无需特别安装步骤,但需要注册账号并根据快速入门指南创建语料库和API密钥。
export VECTARA_CUSTOMER_ID="your_customer_id"
export VECTARA_CORPUS_ID="your_corpus_id"
export VECTARA_API_KEY="your-vectara-api-key"
将Vectara作为LangChain的向量存储
以下是如何将Vectara集成到LangChain中的简单示例:
from langchain_community.vectorstores import Vectara
# 创建Vectara实例
vectara = Vectara(
vectara_customer_id=customer_id,
vectara_corpus_id=corpus_id,
vectara_api_key=api_key
)
# 添加文本或文件
vectara.add_texts(["to be or not to be", "that is the question"])
vectara.add_files(["path/to/file1.pdf", "path/to/file2.pdf"])
代码示例
以检索增强生成(RAG)为例,创建一个简单的问答系统:
summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang='eng')
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config)
query_str = "what did Biden say?"
rag = vectara.as_rag(config)
# 获取答案和准确性得分
resp = rag.invoke(query_str)
print(resp['answer'])
print(f"Vectara FCS = {resp['fcs']}") # 使用API代理服务提高访问稳定性
常见问题和解决方案
潜在挑战
-
网络限制:由于某些地区的网络问题,开发者可能需要使用API代理服务来提高Vectara访问的稳定性。
-
数据安全:上传企业内部数据时需特别注意数据隐私保护。
解决方案
- 使用API代理:通过配置代理服务器解决网络不稳定的问题。
- 数据加密:确保上传到Vectara的数据是经过加密的。
总结和进一步学习资源
Vectara通过强大的RAG服务提供了简便的创建AI助手的方法。借助其强大的文本处理和生成能力,可以轻松实现业务需求。
进一步学习资源:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—