nkoj 8467
比赛真理 | ||
|
问题描述
儿时的东东经历过多次信竞比赛失利之后,得到了一个真理:做一题就要对一题!但是要完全正确地做对一题是要花很多时间(包括调试时间),而比赛的时间有限。所以开始做题之前最好先认真审题,估计一下每一题如果要完全正确地做出来所需要的时间,然后选择一些有把握的题目先做。 当然,如果做完了预先选择的题目之后还有时间,但是这些时间又不足以完全解决一道题目,应该把其他的题目用搜索、贪心之类的算法随便做做,争取“骗”一点分数。
任务 :根据每一题解题时间的估计值,确定一种做题方案(即哪些题目认真做,哪些题目“骗”分,哪些不做),使能在限定的时间内获得最高的得分,
输入格式
输入文件的第一行有两个正整数N和T,表示题目的总数以及竞赛的时限(单位秒)。
以下的N行,每行4个正整数Wi、Ti、W2i、T2i ,分别表示第i题:完全正确做出来的得分,完全正确做出来所花费的时间(单位秒),“骗”来的分数,“骗”分所花费的时间(单位秒)。
其中,3<=N<=30,2<=T<=30000,i<=W1i、W2i<=10000,1<=Ti、T2i<=T。
输出格式
直接把所能得到的最高分值输出只有一行。
样例输入 1
4 10800
18 3600 3 1800
22 4000 12 3000
28 6000 0 3000
32 8000 24 6000
样例输出 1
50
样例输入 2
3 7200
50 5400 10 900
50 7200 10 900
50 5400 10 900
样例输出 2
70
这题就是基础的01背包,我们只需要把骗分和正解放进一个背包里,再看他们那个最优选哪个。
正确代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int v1,w2,v3,w4;
int f[2000010];
int main(){
cin>>n>>m;
for (int i=1;i<=n;i++){
cin>>v1>>w2>>v3>>w4;
for (int j=m;j>=min(w2,w4);j--){
if (j>=w2)
f[j]=max(f[j],f[j-w2]+v1);
if (j>=w4)
f[j]=max(f[j],f[j-w4]+v3);
}
}
cout<<f[m];
return 0;
}