只要你想学Python,跟着这份计划走,没成效你打我

Python之所以热门,主要原因是应用广泛,无论是想做网站开发、数据分析、机器学习,还是游戏制作都可以使用Python实现。另外还有不少人学习Python是为了工作效率。但是Python知识点也很多,如果没有一个清晰的学习安排,不少小伙伴还是会感到迷茫。

如何系统地自学Python?

这个问题其实很简单,相信十多年从来经验的我,跟我这篇文章来,系统性的学会Python是几周的事。不长,也不需要你怎么努力。

学会 Python 首先要有一个准确的目标,你要求系统性掌握,那就要定义好系统性这个模糊的词汇到一个精确的分解目标。然后学习、练习,再总结一下就好了。

今天!小编为大家提供一个从入门到精通的完整指南,帮助大家可以快速、高效掌握Python的核心技能和最佳实践。

学习准备

1. 配置Python学习环境
  • 选择Python版本:推荐学习最新版本的Python 3,因为Python 2已经于2020年初停止支持。

  • 安装Python:从Python官网下载并安装Python 3。Windows、macOS和Linux系统均支持Python,且安装过程相对简单。

  • 选择开发工具:对于初学者,推荐使用PyCharm社区版,它配置简单、功能强大且免费。此外,IDLE(Python自带编辑器)、Visual Studio Code等也是不错的选择。

2. 制定学习计划
  • 设定明确的学习目标,如掌握Python基础语法、熟悉常用库、能够编写简单程序等。

  • 制定详细的学习计划,包括每天的学习内容、时间安排和复习计划。

学习建议

1.保持耐心和坚持:编程学习需要时间和实践积累,不要急于求成。

2.多动手实践:理论知识是基础,但只有通过实践才能真正掌握。

3.寻求帮助:遇到问题时不要害怕提问,可以查阅官方文档、搜索网络资源或向他人求助。

4.参加社区活动:加入Python学习社区或论坛,与其他学习者交流心得和经验。

python安装包、永久激活码已准备好,需要自取👇

一、Python基础

Python语言的基础知识是掌握Python编程的第一步。它包括了Python的语法规则、数据类型、字符串操作、条件判断和循环语句、函数的定义与调用、类与对象的概念,以及面向对象编程的基础概念如继承和多态。通过学习Python语言的基础知识,你可以深入了解Python的独特特性和编程风格,掌握如何编写简单而有效的Python程序。W3Cschool提供了专门针对初学者的Python基础课程,通过这些课程,你可以建立起扎实的编程基础,为未来的学习和应用奠定坚实的基础。

学习Python语言基础的路线可以分为以下几个阶段:

1.Python3入门:

了解Python3的安装方法、如何运行Python程序以及交互模式的使用,同时学习注释的添加方法。

2.数据类型:

掌握Python中的各种数据类型,包括数字、布尔值、字符串、列表、元组、字典和集合,并学习它们的基本操作和方法。

3.字符串操作:

熟悉字符串的创建、格式化、切片、拼接、查找、替换等常用操作,以及掌握常用的字符串方法和函数。

4.条件判断和循环语句:

理解if、elif、else、while和for等条件判断和循环语句的用法,同时掌握控制语句如break、continue和pass的作用。

5.函数:

学习函数的定义和调用方式,了解参数、返回值、局部变量和全局变量的概念,并熟悉高级用法如匿名函数和递归函数。

6.命名空间和作用域:

理解命名空间和作用域的概念及规则,并掌握global和nonlocal关键字的使用。

7.类与对象:

掌握面向对象编程的基本思想和方法,包括类的定义、实例化、属性、方法和构造函数等内容。

8.继承和多态:

理解继承和多态的概念,掌握子类和父类之间的关系,以及方法的重写和调用父类方法的方式。

9.tkinter界面编程:

了解tkinter模块,学习使用tkinter创建图形用户界面(GUI),包括布局管理器、组件和事件处理等内容。

10.文件操作与异常处理:

掌握文件的打开、读写和关闭操作,同时学习异常的捕获和处理方法。

11.数据处理简介:

了解数据处理的基本概念和流程,学习使用csv模块读写csv文件,使用json模块读写json文件,以及使用pickle模块实现对象的序列化和反序列化。

二、Python进阶知识

学习Python语言的高级阶段是在掌握了Python语言基础之后,进一步提升编程能力的重要阶段。这个阶段涉及到利用Python常见的第三方库进行网络编程、正则表达式、邮箱爬虫、文件遍历、金融数据爬虫、以及多线程爬虫等内容。在这方面,W3Cschool提供了关于爬虫的入门和进阶课程,可以帮助你系统地学习这些高级内容。通过学习Python语言的高级特性,你可以扩展Python的功能和应用范围,提高编程效率和代码质量,从而更好地应对各种实际编程任务。

学习Python语言高级阶段的路线如下:

1.Python常见第三方库与网络编程:

了解并掌握Python中常用的第三方库,如requests、beautifulsoup、selenium等,学习如何利用它们进行网络编程,包括发送请求、解析网页和模拟浏览器等操作。

2.Python正则表达式:

掌握正则表达式的语法规则和re模块的使用方法,学习如何利用正则表达式进行字符串的匹配、提取和替换等操作。

3.邮箱爬虫:

利用requests和beautifulsoup模块实现一个简单的邮箱爬虫,从网页中提取邮箱地址,并将其保存到文件中。

4.文件遍历:

利用os模块实现一个文件遍历器,能够遍历指定目录下的所有文件和子目录,并输出文件的路径、大小、修改时间等信息。

5.金融数据爬虫:

利用requests和pandas模块实现一个金融数据爬虫,从网站上获取股票、基金、汇率等金融数据,并将其保存到csv文件中。

6.多线程爬虫:

利用threading模块实现一个多线程爬虫,能够同时爬取多个网页,从而提高爬虫的效率和速度。

7.Python线程、进程:

理解线程和进程的概念和区别,掌握threading和multiprocessing模块的使用方法,学习如何创建和管理线程和进程,以及线程间和进程间的通信和同步机制。

8.Python MySQL数据库:

了解MySQL数据库的基本概念和操作,掌握pymysql模块的使用方法,学习如何使用Python连接MySQL数据库,并执行SQL语句进行增删改查等操作。

9.协程:

理解协程的概念和特点,掌握asyncio模块的使用方法,学习如何使用协程实现异步编程,以及await和async关键字的作用。

10.jython:

了解jython的含义和作用,学习如何使用jython在Java平台上运行Python代码,以及如何调用Java类库和对象。

【----相关技术讨论,Python入门基础教程文末见晓!----】

三、Linux知识

Linux基础学习的内容包括:

1.文件处理命令:

学习使用常见的文件处理命令如ls、cd、cp、mv、rm等,掌握文件和目录的创建、查看、复制、移动和删除等操作。

2.权限管理命令:

理解Linux文件权限的概念,学习chmod、chown、chgrp等命令,掌握如何修改文件和目录的权限、所有者和所属组。

3.帮助命令:

掌握如何使用man、info等命令查阅Linux系统和命令的帮助文档,以及如何使用--help选项获取命令的简要说明。

4.文件搜索命令:

学习使用grep、find等命令进行文件内容搜索和文件查找,掌握如何在文件系统中快速定位目标文件或目录。

5.压缩解压命令:

掌握常见的压缩解压命令如tar、gzip、bzip2等,了解如何对文件和目录进行打包压缩和解压缩操作。

6.命令使用技巧:

学习一些常用的命令使用技巧,如管道命令、重定向、通配符等,提高在命令行下的效率和灵活性。

7.VIM使用:

熟悉VIM编辑器的基本操作,包括插入、删除、复制、粘贴、保存和退出等操作,掌握VIM编辑器的常用命令和功能。

8.软件包管理:

了解Linux系统中常用的软件包管理工具,如apt、yum等,学习如何安装、更新、卸载软件包,以及如何管理软件包的依赖关系。

9.用户和用户组管理:

掌握Linux系统中用户和用户组的管理命令,如useradd、userdel、groupadd等,了解如何创建、修改和删除用户和用户组,以及如何管理用户的权限和访问控制。

四、数据分析相关知识

Python数据分析是一项广泛应用于各个领域的重要技能,它涉及到使用Python编程语言进行数据的收集、清洗、处理、分析和可视化等操作。主要包括以下几个方面:

1.数据收集:

学习如何从不同的数据源获取数据,包括文件、数据库、网络等,以及如何使用Python库进行数据的获取和导入。

2.数据清洗:

掌握数据清洗的技巧和方法,包括处理缺失值、重复值、异常值等,使数据达到可分析的标准。

3.数据处理:

使用Python数据分析库如NumPy和Pandas对数据进行处理和转换,包括数据的筛选、排序、合并、拆分等操作。

4.数据分析:

运用统计学和机器学习等技术对数据进行分析和挖掘,发现数据中隐藏的规律和趋势,提取有价值的信息。

5.数据可视化:

使用Matplotlib、Seaborn等库将数据以图表的形式进行可视化展示,直观地呈现数据分析的结果和结论。

6.其他数据分析库:

了解和掌握其他常用的Python数据分析库如Scipy、Scikit-learn等,扩展数据分析的能力和应用范围。

通过学习Python数据分析,你可以掌握从数据中提取有价值信息的技能,为数据驱动的决策提供支持,并在各个领域中发挥重要作用。

五、Python大数据

学习Python大数据的路线如下:

1.Hadoop HDFS:

了解Hadoop是一个分布式计算框架,掌握Hadoop的核心组件HDFS的基本概念和架构,学习使用HDFS进行分布式文件系统的管理和操作。

2.Python Hadoop MapReduce:

了解MapReduce是一种分布式计算模型,掌握MapReduce的基本原理和流程,学习使用Python编写MapReduce程序,并在Hadoop上运行。

3.Python Spark core:

了解Spark是一个快速、通用、可扩展的大数据处理框架,掌握Spark的核心组件Spark core的基本概念和架构,学习使用Spark core进行分布式数据的转换和行动操作。

4.Python Spark SQL:

了解Spark SQL是一个用于结构化和半结构化数据处理的Spark模块,掌握Spark SQL的基本概念和功能,学习使用Spark SQL进行数据的读取、查询、分析等操作。

5.Python Spark MLlib:

了解Spark MLlib是一个用于机器学习的Spark模块,掌握Spark MLlib的基本概念和功能,学习使用Spark MLlib进行机器学习算法的训练和预测等操作。

通过学习Python大数据,你可以掌握处理海量数据的技术和方法,为数据存储、分析、挖掘等操作提供解决方案,从而更好地应对大数据时代的挑战。

有人说说自己自学Python很久却还是不会用,其实这个就像你学英语十几年还是不会说,原因是一样的,你没有把Python当做工具去用,而是一味地学,等同于纸上谈兵。

【----相关技术讨论,Python入门基础教程文末见晓!----】

六、学习可以看哪些书籍?

入门书籍看这几本:

  • 《与孩子一起学编程》:一本老少咸宜的编程入门奇书!

  • 《A byte of Python》:只有149页,两三天就能读完。

  • 《笨办法学Python 3》:适合没有学过编程,但对编程感兴趣的读者学习使用。

  • 《Python编程:从入门到实践》:非常基础的 Python 入门书,手把手教,编程小白都能看得懂。

入门视频课程推荐看这几个:

  • Python官方文档:docs.python.org(不用多说了吧,必须看)

  • 廖雪峰Py教程:liaoxuefeng.com(大牛带你简单快速入门)

  • 菜鸟教程:runoob.com/python/(最经典的语言教程网站)

进阶书籍推荐这几本:

  • 《Python基础教程第3版》:久负盛名的 Python 经典书籍,入门也可看(前8章)。

  • 《Python学习手册第4版》:内容全面深入,编程新手 、Python 初学者值得一读。

  • 《Python Cookbook第 3 版》:覆盖了 Python 应用中的很多常见问题,并提出了通用的解决方案。

进阶视频课程推荐这三个:

  • Python在线手册:docs.pythontab.com(一个导航类学习网站,除了 Python,还有 Django,Flask 等等)

  • The Hitchhiker’s Guide to Python:docs.python-guide.org/(新手和进阶人员都可以读的教程)

  • CheckiO:py.checkio.org/(一个学习PY的有趣网站)

高阶书籍推荐这几本:

  • 《Python核心编程(第 3 版)》:涉及的知识点比较多,内容也比较杂,适合有一定编程经验的人。

  • 《深入理解Python特性》:只有不到200页,对语言了解的越多,用起来就越顺。

  • 《流畅的Python》:对于想要扩充知识的中级和高级 Python 程序员来说,这本书是充满了实用编程技巧的宝藏。

  • 《Python高手之路》:偏向于工程实践的一本书,作者分享了很多个人的实战开发经验。

高阶相关视频课程有:

  • learn-python:github.com/trekhleb/learn-python(一份以代码和注释方式讲解 Python 的免费教程。)

  • Py Module of the Week:pymotw.com/3/(每篇介绍一个Python标准库的使用)

  • Py中文学习大本营:pythondoc.com(一个不错的flask学习网站)

  • 刘江的Django:liujiangblog.com(最适合入门的Django教程)

七、关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

整理出了一套系统的学习路线,这套资料涵盖了诸多学习内容:开发工具,基础视频教程,项目实战源码,51本电子书籍,100道练习题等。相信可以帮助大家在最短的时间内,能达到事半功倍效果,用来复习也是非常不错的。

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

图片

👉Python必备开发工具👈

图片

👉Python学习视频合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

图片

👉100道Python练习题👈

检查学习结果。

图片

👉面试刷题👈

图片

  • 23
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值