10个鲜为人知的Python技巧,助你提升编程技能!

Python是最受欢迎的编程语言之一,以其简单性、多功能性和可读性而闻名。

然而,在其广为人知的路径之外,隐藏着一些鲜为人知的技巧和技术,它们可以将你的Python编码技能提升到新的高度。

在本文中,我们将深入探讨十个这样的技巧,这些技巧可能不在你的日常工具包中,但可以对你的编码工作产生重大影响。 

图片

从简化字典操作到掌握路径操作,从高级迭代模式到轻量级数据结构,这些技巧中的每一个都可以让你一窥Python功能的丰富性和深度。

无论你是想要扩展知识库的经验丰富的Pythonista,还是渴望充分发挥该语言潜力的新手,这些技巧都一定会在你的Python之旅中为你提供启发和助力。

▍1、使用collections.defaultdict简化字典操作

collections.defaultdict模块允许你创建具有默认值的字典,避免关键错误并使你的代码更简洁。

from collections import defaultdict

# 没有使用defaultdict
word_count = {}
for word in words:
    if word in word_count:
        word_count[word] += 1
    else:
        word_count[word] = 1

# 使用defaultdict
word_count = defaultdict(int)
for word in words:
    word_count[word] += 1
print(word_count)

示例输出如下。

{'apple': 3, 'banana': 2, 'orange': 1}
defaultdict(<class 'int'>, {'apple': 3, 'banana': 2, 'orange': 1})

▍2、使用pathlib路径操作

pathlib模块提供了一种面向对象的方法来处理文件系统路径,使你的代码更直观、更易于阅读。

from pathlib import Path

# 创建Path对象
p = Path('/usr/bin')

# 检查路径是否存在
print(p.exists())

# 遍历目录
for child in p.iterdir():
    print(child)

# 组合路径
q = p / 'local' / 'bin'
print(q)

如果你在基于Unix的系统上运行此脚本,你可能会看到以下输出。

True
/usr/bin/zip
/usr/bin/python3
/usr/bin/grep
/usr/bin/tar
...
/usr/bin/zcat
/usr/bin/unzip
...
/usr/bin/curl
/usr/bin/wget
...
/usr/bin/local/bin

p.exists(),True如果存在则打印/usr/bin。

for child in p.iterdir():,打印其中的每个文件和目录/usr/bin。

print(q),输出连接路径/usr/bin/local/bin。

▍3、使用enumerate枚举

enumerate是一个内置函数,允许你循环可迭代对象并具有自动计数器,从而简化循环。
 

# 不使用enumerate
i = 0
for element in iterable:
    print(i, element)
    i += 1

# 使用enumerate
for i, element in enumerate(iterable):
    print(i, element)

示例输出如下。

0 apple
1 banana
2 orange
0 apple
1 banana
2 orange

▍4、使用zip并行迭代

zip允许你并行迭代多个可迭代对象,创建相应元素的元组,既高效又易读。
 

names = ['Alice', 'Bob', 'Charlie']
scores = [85, 90, 95]

# 不使用zip
for i in range(len(names)):
    print(names[i], scores[i])

# 使用zip
for name, score in zip(names, scores):
    print(name, score)

示例输出如下。

Alice 85
Bob 90
Charlie 95
Alice 85
Bob 90
Charlie 95

▍5、使用itertools高级迭代

itertools模块包含各种可用于创建复杂迭代模式的函数,使你的代码更加强大和灵活。

import itertools

# 无限计数
for i in itertools.count(10, 2):
    if i > 20:
        break
    print(i)

# 笛卡尔乘积
for item in itertools.product([1, 2], ['a', 'b']):
    print(item)

示例输出如下。

10
12
14
16
18
20
(1, 'a')
(1, 'b')
(2, 'a')
(2, 'b')

▍6、使用with语句进行资源管理

with语句简化了异常处理并确保资源得到正确管理,这对于编写健壮的代码至关重要。

# 不使用with
file = open('example.txt', 'r')
try:
    data = file.read()
finally:
    file.close()

# 使用with
with open('example.txt', 'r') as file:
    data = file.read()

▍7、namedtuple轻量级数据结构

collections.namedtuple模块提供了一种简单的方法来创建轻量级、不可变的数据结构,可以使你的代码更清洁、更具自文档性。

from collections import namedtuple

# 定义一个namedtuple
Point = namedtuple('Point', ['x', 'y'])

# 创建一个实例
p = Point(10, 20)

print(p.x, p.y)

示例输出如下。

10 20

▍8、使用列表推导实现简洁的代码

列表推导提供了一种创建列表的简洁方法,使你的代码更具可读性,而且通常运行速度更快。

# 不使用列表表达式
squares = []
for x in range(10):
    squares.append(x**2)

# 使用列表表达式
squares = [x**2 for x in range(10)]

示例输出如下。

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

▍9、使用functools.lru_cache记忆法

functools.lru_cache可用于缓存昂贵的函数调用的结果,显著提高具有重复、计算密集型操作的函数的性能。

import functools

# 定义一个函数来使用递归计算斐波那契数列
@functools.lru_cache(maxsize=None)  # 无限制地缓存所有结果
def fibonacci(n):
    # 基本情况:斐波那契(0)为0,斐波那契(1)为1
    if n < 2:
        return n
    # 递归情况:斐波那契(n)是斐波那契(n-1)和斐波那契(n-2)的总和
    return fibonacci(n - 1) + fibonacci(n - 2)

# 使用大量输入测试该函数,以查看性能优势
if __name__ == "__main__":
    import time

    # 计算不使用记忆的斐波那契数35
    start_time = time.time()
    print(f"Fibonacci(35) without memoization: {fibonacci(35)}")
    print(f"Time taken without memoization: {time.time() - start_time} seconds")

    # 重置缓存以进行比较
    fibonacci.cache_clear()

    # 使用记忆法计算35的斐波那契
    start_time = time.time()
    print(f"Fibonacci(35) with memoization: {fibonacci(35)}")
    print(f"Time taken with memoization: {time.time() - start_time} seconds")

    # 显示缓存信息
    print(f"Cache info: {fibonacci.cache_info()}")

示例输出如下。

Fibonacci(35) without memoization: 9227465
Time taken without memoization: 0.00012087821960449219 seconds
Fibonacci(35) with memoization: 9227465
Time taken with memoization: 0.000007867813110351562 seconds
Cache info: CacheInfo(hits=68, misses=36, maxsize=None, currsize=36)

▍10、使用“_”作为一次性变量

在循环或解包时,当不需要该值时,通常将“_”用作一次性变量,从而使你的代码更清晰,并表明该变量被故意忽略。

# 带有一次性变量的循环
for _ in range(5):
    print("Hello, World!")

# 用一次性变量拆包
a, _, b = (1, 2, 3)
print(a, b)

示例输出如下。

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
1 3

这些鲜为人知的Python技巧可以帮助你编写更高效、更易读、更Pythonic的代码。

无论你是简化字典操作、更直观地管理文件路径,还是利用高级迭代技术,这些技巧都可以增强你的开发过程。

尝试这些技巧并将它们融入你的编码实践中,以成为更熟练的Python开发人员。

最后,我精心筹备了一份全面的Python学习大礼包,完全免费分享给每一位渴望成长、希望突破自我现状却略感迷茫的朋友。无论您是编程新手还是希望深化技能的开发者,都欢迎加入我们的学习之旅,共同交流进步!

🌟 学习大礼包包含内容:

Python全领域学习路线图:一目了然,指引您从基础到进阶,再到专业领域的每一步学习路径,明确各方向的核心知识点。

超百节Python精品视频课程:涵盖Python编程的必备基础知识、高效爬虫技术、以及深入的数据分析技能,让您技能全面升级。

实战案例集锦:精选超过100个实战项目案例,从理论到实践,让您在解决实际问题的过程中,深化理解,提升编程能力。

华为独家Python漫画教程:创新学习方式,以轻松幽默的漫画形式,让您随时随地,利用碎片时间也能高效学习Python。

互联网企业Python面试真题集:精选历年知名互联网企业面试真题,助您提前备战,面试准备更充分,职场晋升更顺利。

👉 立即领取方式:只需【点击这里】,即刻解锁您的Python学习新篇章!让我们携手并进,在编程的海洋里探索无限可能

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值