便利蜂智能制作策略平台的探索与实践

本文介绍了便利蜂智能制作策略平台的探索与实践,从人工规则到数据建模和优化算法的演变。文章阐述了策略开发的各个阶段,包括人工规则、统计分析和优化算法的应用,并探讨了原有策略开发模式的问题,提出了一种新的策略平台解决方案,旨在提高策略迭代效率和质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

 

什么是策略

在各大互联网公司中,有一个很重要的岗位:策略(算法)工程师。我们知道,前端开发工程师和后端开发工程师通常会协作开发Web、App给用户使用,那策略工程师又是干什么的呢?

这要从什么是策略说起,百度百科给的解释是:

策略,指计策;谋略。一般是指:

  1. 可以实现目标的方案集合;

  2. 根据形势发展而制定的行动方针和斗争方法;

  3. 有斗争艺术,能注意方式方法。

举个例子,在便利蜂的鲜食区,我们会售卖热腾腾的包子,有鲜肉大包、奶黄包、烧卖、红糖馒头、菜团子等等。我们也会定期的根据顾客的喜好及其他因素更新包子的口味。

打个比方,假设有30种口味的包子,考虑到陈列效果等因素,只能选择其中的20种来售卖,该如何选择呢?

策略关注的几个要点:

  1. 优化目标是什么 —— 包子的销售额

  2. 限制条件是什么 —— 最多只能选择20种包子

  3. 控制变量是什么 —— 包子的种类和数量

策略的三个阶段

注:以下为策略发展的推导,方便大家理解策略“进化”的过程,并非便利蜂实际使用的策略。

  1. 人工规则。基于少量样本和人的经验总结,形成的策略。

    策略 0.1 —— “人工”智能

    店员/运营根据自己的经验,为每个门店选择需要订的包子种类和数量。

    比如,本周每天的包子种类和数量,等于上周对应天的包子种类和数量,如果有情报信息(比如周边学校开学了),再做对应调整。

    在这种方式下,可能会出现一些badcase:

    • 上周还够卖,这周就不够了(或反之)

    • 以前某个种类的包子卖的好,这周突然卖的不好了

    • 店员/运营忘了或来不及做调整,最后订多订少

    • 店越来越多,运营扛不住了(1分钟处理一家店,100家 vs 1000家)

    • ...

    人搞不定了,那就让机器来吧,于是——

    策略 1.0 —— 包子区分荤素,按比例选品给量

    比如选择5种荤的,5种半荤半素的,5种素的,每种的量平分。

    在这种策略下,会出现新的badcase:

    • 某店周围写字楼里IT人士很多,他们更偏好荤和半荤的种类

    • 某店周边有健身房,健身爱好者们对素包子情有独钟

    • ...

  2. 统计分析。基于一定量的历史样本,对于简单变量,通过统计分析得到最优解。

    策略 2.0 —— 根据历史预测未来

    理由:基于门店周边客流及其特点是平稳的,可以根据历史的情况来预测未来。

    统计过去一周工作日&休息日的包子销售情况,按此来选择包子种类和数量。

    有特殊情报再特殊处理。

    看起来在这种情况下,badcase会比较少,但实际上,还是会有各种各样的需求变化。

    比如,虽然我喜欢吃鲜肉大包,但是让我每天去吃,吃几周我就会腻了,想换换口味。如果大家都和我类似,就会发现,即使一家门店的顾客不变,每天对包子种类的诉求汇总也是不一样的。

    再比如,如果一家门店只卖某些口味的包子,顾客慢慢会产生一定的味觉疲劳与厌倦感,就需要上新的口味,那该替换之前的哪种口味,以及数量上该替换多少,都是策略(算法)需要考虑的事情。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值