Spark ML包随机森林回归

官方文档:

trainRegressor(input: RDD[LabeledPoint]categoricalFeaturesInfo: Map[IntInt]numTrees: Int,

featureSubsetStrategy: Stringimpurity: StringmaxDepth: Int,

 maxBins: Intseed: Int = Utils.random.nextInt())


我们需要一个LabeledPoint 格式的 训练数据

LabeledPoint 由两部分组成

val input=LabeledPoint(Label,Feature(Vector型))

Label需要为double型

此处我们需要Import LabledPoint 和Vector2个包:

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.{Vectors,Vector}


其他参数:

categoricalFeaturesInfo:一个Map,表示离散特征,格式为[colId,该colId对应特征的维度数]

numTrees:树的数量

featureSubsetStrategy:特征采样方法,选用"auto"代表按1/3采样

impurity:计算特征重要性的指标,此处为回归,选用"variance"

maxDepth:树的最大深度

maxBins:树的最大分裂区间数

seed:随机种子,可不填


val model=RandomForest.trainRegressor(...)

val pre=model.predict("test_feature")


pre为最终回归结果










评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值