基于caffe和casiaHWDB手写体汉字库的网络和参数设置(上)

本文详细探讨了使用Caffe训练基于caffe和casiaHWDB的手写体汉字识别网络,讨论了包括Test_iter、test_interval、weight_decay等关键参数设置,并通过多个模型实验分析了不同参数对模型训练的影响,例如全连接层num_output的变化并未导致错误。同时,文章介绍了在AlexNet基础上训练不同类别数据的效果。
摘要由CSDN通过智能技术生成

网络和参数配置看论文:Convolution Neural Networks for Chinese Handwriting Recognition

lzj_solver.prototxt里面

(1)test_iter:测试样本总数/;

这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch

注意:之前用convert_imageset生成LMDB格式时,参数resize_height和resize_width一定要设置,不然会出现data_transformer.cpp里的错误

错误:Check failed: error == cudaSuccess (2 vs. 0)  out of memory
解决办法:GPU查内存命令:nvidia-smi
杀死进程命令:kill -9 PID PID为上面查出的进程号

(2)test_interval

test_interval: 500

测试间隔。也就是每训练500次,才进行一次测试。

mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60,000个训练样本集和10,000个测试样本集,对应test_interval是500,我们是在此基础上作改动

在300个训练集和测试集中,样本分别有72,000和18,000,对应test_interval是600

在3755个训练集和测试集中,样本分别有901,200和225,300,对应test_interval是6260


(3)base_lr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值