【数据结构】邻接多重表

邻接多重表

上一节总结了有向图的另外一种链式存储结构—十字链表,该节继续总结无向图的另一种链式存储结构。

基本概念

邻接表虽然已经能够很好地表示无向图了,但是无向图访问或者删除一条边(Vi,Vj)时需要同时访问两个链表i和j并分别找到对应的边结点,这给针对图的边的操作(标记或删除)带来不便利。邻接多重表因此而演变过来的。

邻接多重表中,无向图中的每一个顶点分配一个顶点结点,所有顶点结点构成一个顶点数组adjmultiList[num]。另外每条边也分配一个边结点。

顶点结构如下所示:


其中data用来记录顶点的信息,firstEdge用来表示依附于该顶点的第一条边。

顶点数组如下所示:

边结点结构如下所示:

其中mark表示标志位,用于标记该边是否已经被访问过;iVex和jVex表示该边的两个顶点在顶点数组adjmultiList[num]中的位置;iLink和jLink分别表示指向依附于顶点iVex和jVex下一条边的指针。

从上面的顶点和边的结构来看,邻接多重表和邻接表的主要区别在于:邻接多重表中的边结点同时被链入对应边顶点的链表内(2条);邻接表中的边用两个表结点表示。另外,邻接多重表中的边结点就表示一条边,比较容易理解。

举个例子。某无向图如下图所示:


当采用邻接表表示该无向图时,其邻接表入下图所示:

如上图所示,图中黄色标记的结点表示A-D之间的边,在邻接表中一条边需要两个结点表示。因此如果对于边的操作(标记或者删除)则需要访问两条链表。

当采用邻接多重表表示该无向图时,其邻接多重表入下图所示:


如上图所示,结点A-D 之间的边,在邻接多重表中只需要一个边结点既可以表示。另外,在该结构中,每个边结点被链入了两个不同的链表。其中A-D之间的边被链入了红色和绿色标记的链表中。如果需要访问一条边,则可以从该边的两个顶点结点中的任何一个出发,遍历依附于该顶点的边构成的链表即可。如果需要删除一条边,则只需要删除一个边结点,但是需要修改这条边依附的两个顶点所对应的链表。另外,需要注意的是,在无向图中,边结点中的iVexjVex链域与该边所依附的顶点无关,即iVex=0jVex=3iVex=3jVex=0这都表示同一条边A-D,因此这给链表的指针修改带来一定的麻烦。

基本操作

1、建立无向图的邻接多重表

输入ABCDE五个顶点V={A,B,C,D,E},然后输入边E={(A,B),(B,C),(B,E),(C,D),(C,E),(D,A)},建立如下无向图:

对任意给定的(顶点数不小于20,边数不少于30,的类型可以是有向、无向、有向网、无向网),能够输入的顶点和边(或弧)的信息,并存储到相应存储结构(邻接矩阵、邻接表、十字链表、邻接多重表,任选其中两种类型),对自己所创建的完成以下操作: 对无向求每个顶点的度,或对有向求每个顶点的入度和出度(5分) 完成插入顶点和边(或弧)的功能(5分) 完成删除顶点和边(或弧)的功能(5分) 两种存储结构的转换(5分),如果其中一种存储结构为十字链表或邻接多重表则增加5分。 输出的深度优先遍历序列或广度优先遍历序列(5分) 求的深度优先或广度优先的生成树(或生成森林)(存储结构为孩子-兄弟链表),并对生成树进行遍历(15分) 判断的连通性,输出连通分量的个数(5分) 判断中是否存在环,无向5分,有向10分 给出顶点u和v,判断u到v是否存在路径(5分) 10、求顶点u到v的一条简单路径(10分) 11、求顶点u到v的所有简单路径(15分) 12、求顶点u到v的最短路径(10分) 13、求顶点u到其余各顶点的最短路径(15分) 14、求任两个顶点之间的最短路径(15分) 15、求最小生成树(15分) 16、对于有一个源点和一个汇点的有向网,求关键路径(20分) 编程环境可以是C、VC++、JAVA,每位同学从上述题目中选择100分的题目,注意,必须选择第1-6题。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bible_reader

如果觉得文章有用,欢迎打赏支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值