简要题意:
在棋盘上放若干个车,车可以攻击到同行同列的棋子。求放完每个车后,不被攻击的棋子个数。
洛谷 题解 里说要用 set \text{set} set 维护,但本人觉得,可以做到线性解决问题!
其实,你可能觉得, O ( n × m ) O(n \times m) O(n×m) 模拟一下就行啊!
模拟方法大致是:
一开始答案为 n 2 n^2 n2,每放一个车,横竖扫一遍,如果没有被标记过(标记可以用二维数组,也可以用 map \texttt{map} map 嵌套 pair \text{pair} pair),那么就答案减少 1 1 1. 每次输出。
时间复杂度: O ( n × m ) O(n \times m) O(n×m). 空间复杂度: O ( n 2 ) O(n^2) O(n2).
如果你改用 map \texttt{map} map 维护标记,搞定内存问题,那么:
时间复杂度: O ( n × m log m ) O(n \times m \log m) O(n×mlogm). 空间复杂度: O ( n ) O(n) O(n).
无论怎样,都无法 n ≤ 1 0 5 n \leq 10^5 n≤105, m ≤ min ( 1 0 5 , n 2 ) m \leq \min(10^5 , n^2) m≤min(105,n2) 这样的强大数据。
所以要寻找本质。
你会发现,最终被攻击的棋子一定是若干整行,若干整列。
那么,如果平移这些行列,会不会对答案产生影响?
不会。
所以,如果车有 x x x 个不同行, y y y 个不同列,那么被攻击的棋子就可以通过平移(小学思路)成为一个 这样的形状:
( x = 2 x=2 x=2, y = 1 y=1 y=1 的例子,重复部分用紫色标出)
此时没被攻击的就是 ( n − x ) × ( n − y ) (n-x) \times (n-y) (n−x)×(n−y) 个,这也很好理解吧?
所以维护行列的不同,然后解决本题。
时间复杂度: O ( m ) O(m) O(m).
空间复杂度: O ( n ) O(n) O(n).
实际得分: 100 p t s 100pts 100pts.
看到了吧,比 set 快多了(不过本质是一样的)
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}
const ll N=1e5+1;
ll a[N],b[N],n,m;
int main(){
cin>>n>>m;
ll num=0,ant=0;
while(m--) {
ll x=read(),y=read();
if(!a[x]) a[x]=1,num++;
if(!b[y]) b[y]=1,ant++;
printf("%lld ",(n-num)*(n-ant));
}
return 0;
}