从三种算法剖析网络流本质

博客园同步

模板题:

原题链接

LOJ

简要题意:

给定一个网络图,求其网络最大流(下简称 最大流)。

网络图的定义:每条边 ( u , v , w ) (u,v,w) (u,v,w) 表示 u → v u \rightarrow v uv流量 w w w,流量可以理解为,单位时间内能流过的最大的量

最大流的定义:从源点开始到汇点,在让 单位时间内每条边流过的量不超过其流量 的情况下最大的运输量。(汇点即终点,源点即起点)

在实际生活中,网络流(就研究最大流)问题可以理解为 供水系统 。以样例为例:

在这里插入图片描述

供水公司 的编号为 4 4 4,你家的编号为 3 3 3,而 中转供水处 只负责转运。网络图如图所示。

由一只聪明的猴子掌控着一些操作:即某某供水处往某某供水处运了多少水,而 水管的大小不同,流量也不同;如果流过的水超过水管的流量会直接渗出 ,所以产生了上面这个图。当然供水公司本着 赚更多钱 运更多的水(但不浪费水)的角度,希望供到你家尽量多的水。

这只猴子把 4 4 4 号节点放 50 L 50L 50L 水出去,其中 20 L 20L 20L 通过 4 → 3 4 \rightarrow 3 43 这条边直接供向了你家。而 30 L 30L 30L ,先是通过 4 → 2 4 \rightarrow 2 42 这条边,到达了 2 2 2 号中转供水处

然后 30 L 30L 30L 又分作两份, 20 L 20L 20L 2 → 3 2 \rightarrow 3 23 流过,剩余 10 L 10L 10L 顺着 2 → 1 → 3 2 \rightarrow 1 \rightarrow 3 213 也到达了你家。

这是,你家就有了 50 L 50L 50L 的水。

如果从 4 4 4 号节点流出了超过 50 L 50L 50L 水,那么 4 → 3 4 \rightarrow 3 43 4 → 2 4 \rightarrow 2 42 这两条边无法承受流量。所以 水在水管里渗掉了,最终还是降为 50 L 50L 50L,浪费了水。

综上,该网络图的最大流 50 50 50.

那么,如何解决网络流问题呢?

首先抛出一些定义便于说理,括号中是便于理解的说法。

  • 设原网络图的点集为 V V V.(由中转处,供水公司和你家构成)

  • 割:将原图中所有顶点分成两个集合 S S S T = V − S T = V - S T=VS ,其中源点 s s s 在集合 S S S 中,汇点 t t t 在集合 T T T 中。如果把起点在 S S S 中,终点在 T T T 中的边全部删除,就无法从 s s s 到达 t t t 了。这样的集合划分 ( S , T ) (S,T) (S,T) 称为一个割。(即将 V V V 分成两部分,使得如果把所有横跨两部分的水管删去,一滴水也到不了你家,比方说上图中, S = ( 4 ) S=(4) S=(4) T = ( 1 , 2 , 3 ) T=(1,2,3) T=(1,2,3) 就是一个割,因为 4 → 3 4 \rightarrow 3 43 4 → 2 4 \rightarrow 2 42 的水管被删掉之后,供水就断了。可以理解成是 有向图中的割边(不严谨)

  • 割的容量:即所有 u → v ( u ∈ S , v ∈ T ) u \rightarrow v (u \in S , v \in T) uv(uS,vT) 的流量之和。(即横跨两集合边的流量之和)

  • 最小割:所有割中容量最小的那个。比方说上图中, S = ( 4 ) , T = ( 1 , 2 , 3 ) S=(4),T=(1,2,3) S=(4),T=(1,2,3) 就是最小割。

  • 最小割最大流定理:最大流等于最小割。具体证明因过于复杂略。(其实可以理解成,有一个 恐怖分子 想让你家喝不到水,他希望割断最短的水管而达到这个目的;那么如果 割掉这些水管可以导致供水系统崩溃并且它是最小的话,很显然,能供向你家的水就是这些水管的流量和了。如果比这个和小,肯定有更小的割;如果比这个和大,那么说明 还有其它水可以不通过这些水管流过,这就不是割了,也矛盾。大概是这样的,感性理解吧,不太严谨)

  • 残余网络:即所有 实际流量与流量的差 构成的网络图。(就是如果这个水管能流过 x x x,但种种原因使得它只流过 y ( y ≤ x ) y (y \leq x) y(yx),那么用 x − y x-y xy 构成网络图)

一种可能求最大流的方法是:采用 Dijkstra \text{Dijkstra} Dijkstra 类似的流法,在残余网络中搜索松弛。没错!

引入

基于最短路中的松弛概念,我们考虑和最短路一样的做法。但是看这个图:

在这里插入图片描述

聪明的猴子选了 1 → 2 → 3 → 4 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 1234 这条边之后,流量是 1 1 1.

但是 你并不能把这条路上流量清 0 0 0,因为明明存在 1 → 2 → 4 1 \rightarrow 2 \rightarrow 4 124 1 → 3 → 4 1 \rightarrow 3 \rightarrow 4 134 这两条可以流量为 2 2 2 的路径

猴子发现自己错了,然后尝试了所有路径……它对自己的杰作感到满意。

可是你会满意么?尝试所有路径是指数级的 爆炸性复杂度,实在无意义(不过 30 % 30 \% 30% 的数据可以拿下,但对正解无益)。

也就是说,我们要想到一种 可以让程序反悔 的操作。

下面就引入了 Ford-Fulkerson \text{Ford-Fulkerson} Ford-Fulkerson 算法,简称 FF \text{FF} FF 算法。

算法一 Ford-Fulkerson \text{Ford-Fulkerson} Ford-Fulkerson

FF \text{FF} FF 的操作是:

  • 当前不断寻找增广路(即不断搜索能继续流的路)

  • 到汇点即有了一条路径,统计答案。然后将这条路径上所有边的流量减掉最终流量,建立反向边的边权为最终流量,构成残余网络。(你似乎明白残余网络是干什么的了)

  • 不断寻找直到找不到为止。

还是上面那个图:

在这里插入图片描述

假设聪明的猴子还是找到 1 → 2 → 3 → 4 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 1234 这条边。流量为 1 1 1,它就会将 路径上所有水管的流量减少 1 1 1,将其反相边流量增加 1 1 1.这样的操作我们称为 “反悔” 操作。 一次之后变成了:

在这里插入图片描述
然后猴子又找到了 1 → 3 → 2 → 4 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 1324 这条路径,两个答案 1 1 1 的和为 2 2 2.

然后再 反悔一次 1 1 1 流不出水,所以结束,答案为 2 2 2.

感性说明(不严谨):

最终流量为 x x x,那么 u → v u \rightarrow v uv 减少 x x x 可以理解为: u u u 现在不想走这条边,想要实施别的增广,那么 v v v 维持输出 的同时收回自己的流量,反悔了一次;接着 走过这条反向路 的路径,显然 和之前的路径都走过这条 u → v u \rightarrow v uv,所以说不影响答案。

因此, FF \text{FF} FF 算法的精髓在于反悔操作,对于当前图不断进行增广,反悔,最终得到答案。

程序实现过程不同,但效率是一样的。

比方说, FF \text{FF} FF 算法是 在流的过程中,判断能否流,然后边流边反悔 的,用 bfs \text{bfs} bfs 实现,时间复杂度为 O ( n × m 2 ) O(n \times m^2) O(n×m2).

而另一个 Edmonds–Karp \text{Edmonds–Karp} Edmonds–Karp 算法(下简称 EK \text{EK} EK 算法)是通过不断 bfs \text{bfs} bfs 实现的,时间复杂度也为 O ( n × m 2 ) O(n \times m^2) O(n×m2).

注:由于各种各样的常数问题,LOJ #101. 最大流 上面跑 EK \text{EK} EK 能过, FF \text{FF} FF 过不了;而本题是 FF \text{FF} FF 能过, EK \text{EK} EK 过不了。(那题要用 long long \text{long long} long long

所以实践告诉我们,还是 dinic 比较稳定 算法的时间复杂度也有一部分取决于常数。所以本题两篇代码都给出。

EK \text{EK} EK 算法:( LOJ \text{LOJ} LOJ 满分,洛谷 70 70 70

#pragma GCC optimize(2)
#include<cstdio>
#include<queue>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

typedef long long ll;
const ll INF=1e18;
const ll N=1e2+1;

inline ll read(){char ch=getchar();ll f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

queue<ll> q; ll flow[N],ans; // flow[i] 是当前最大流量
ll n,m,s,t,g[N][N],pre[N]; // pre[i] 记录前驱 , 利于反悔

inline ll bfs(ll s,ll t) { //增广一次
	while(!q.empty()) q.pop(); 
	memset(pre,-1,sizeof(pre));
	pre[s]=0; q.push(s); flow[s]=INF;
	while(!q.empty()) {
		ll u=q.front(); q.pop();
		if(u==t) break;
		for(ll i=1;i<=n;i++)
			if(g[u][i]>0 && pre[i]==-1ll) {
				pre[i]=u; flow[i]=min(flow[u],g[u][i]);
				q.push(i); //可以增广则更新一次 , 类似于 dijkstra
			}
	} return (pre[t]==-1ll)?-1ll:flow[t];
}

inline void EK(ll s,ll t) {
	ll x=0;
	while((x=bfs(s,t))!=-1ll) { //只要增广路存在则继续
		ll k=t; while(k!=s) {
			ll l=pre[k];
			g[l][k]-=x; g[k][l]+=x;
			k=l; //反悔 , 一次次迭代路径
		} ans+=x; //记录答案
	}
}

int main(){
	n=read(),m=read(),s=read(),t=read();
	while(m--) {
		ll u=read(),v=read(),w=read();
		g[u][v]+=w;
	} EK(s,t); printf("%lld\n",ans);
	return 0;
}

FF \text{FF} FF 算法:( LOJ  75 p t s \text{LOJ} \space 75pts LOJ 75pts不过因为出题人把所有测试点放在一个 Subtask \text{Subtask} Subtask 所以是 0 0 0 分,但 实际上是 75 p t s 75pts 75pts),洛谷 100 p t s 100pts 100pts).

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=2e5+1;

inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

int n,m,s,t; bool vis[N];
vector<pair<int,int> > G[N];

inline int found(int x,int y) {
	for(int i=0;i<G[x].size();i++)
		if(G[x][i].first==y) return i;
} //表示找到 x->y 的路返回其位置

inline int dfs(int u,int flow) { //返回当前最大流 , 为 0 说明无法流
	if(u==t) return flow;
	vis[u]=1; for(int i=0;i<G[u].size();i++) {
		int v=G[u][i].first,w=G[u][i].second;
		if(!w || vis[v]) continue;
		int x=dfs(v,min(flow,w)); //下一步
		if(x>0) { //可以流
			G[u][i].second-=x; 
			int y=found(v,u);
			G[v][y].second+=x; //反悔一次
			return x;
		}
	} return 0; //所有尝试没有答案则无解
}

int main(){
	n=read(),m=read(),s=read(),t=read();
	while(m--) {
		int u=read(),v=read(),w=read();
		G[u].push_back(make_pair(v,w));
		G[v].push_back(make_pair(u,0)); //细节 , 便于之后操作
	} int t,ans=0;
	while((memset(vis,0,sizeof(vis))) && (t=dfs(s,INT_MAX))>0) ans+=t; //可以增广则增广一次
	printf("%d\n",ans);
	return 0;
}

算法二 dinic \text{dinic} dinic

上面的 FF \text{FF} FF EK \text{EK} EK 算法,虽然实现不同但本质完全一样,因为常数问题,我们难以确定它们的最终效率究竟如何,因此我们需要更优的算法。

注意到在 FF \text{FF} FF(下文中用 FF \text{FF} FF 代称两种算法)每次反悔的时间不是很妙,大量操作也不是很优。

注意到一种优化,如果我们把 FF \text{FF} FF 中, u → v u \rightarrow v uv 这条边当 v v v 遍历完毕时,那么我们直接从 u u u 重新尝试其它的 u → v u \rightarrow v uv .

那么,这样快了许多是不错的,但是 出现绕长路,走回路 的棘手问题。

所以,我们根据 搜索树 的思路,提出了 分层图 的概念。

分层图 其实就是按照和源点的距离进行分层。用人话说,就是源点自己是 1 1 1 层,源点 i i i 步能 流到(流量为 0 0 0 就算了)
的是 i + 1 i+1 i+1 层。

这样的分层,我们每次 只需要从 i i i 层往 i + 1 i+1 i+1 层探索即可。

那么你会问了:如何判断当前有解呢?

如果最终汇点有层数的话,说明能流到汇点,就有解;如果流不到汇点,就是没有层数,那肯定是无解。分层既可以优化搜索效率,又可以做无解判断。好!

理论上时间复杂度: O ( n × m ) O(n \times m) O(n×m).(由于根本跑不满这个时间,所以仍然能通过,两个 OJ \text{OJ} OJ 都测过了)

实际得分: 100 p t s 100pts 100pts.

// 这是洛谷上交的 , 去 LOJ 的话要开 long long
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=2e5+1;

inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

int n,m,s,t,ans=0,dep[N],q[N];
vector<pair<int,int> > G[N];

inline bool bfs() { //探索
	memset(dep,0,sizeof(dep)); int l,r; //用左右指针实现队列
	q[l=r=1]=s; dep[s]=1; while(l<=r) {
		int u=q[l++]; for(int i=0;i<G[u].size();i++) {
			int v=G[u][i].first,w=G[u][i].second;
			if(!w || dep[v]) continue; //流过或者流量为 0
			dep[v]=dep[u]+1,q[++r]=v; //探索
		}
	} return dep[t];
}

inline int found(int x,int y) {
	for(int i=0;i<G[x].size();i++)
		if(G[x][i].first==y) return i;
}

inline int dfs(int u,int dis) {
	if(u==t) return dis;
	int out=0; for(int i=0;i<G[u].size();i++) {
		int v=G[u][i].first,w=G[u][i].second;
		if(!w || dep[v]!=dep[u]+1) continue;
		int x=dfs(v,min(dis,w));
		G[u][i].second-=x; int y=found(v,u);
		G[v][y].second+=x; dis-=x; out+=x;
	} return dep[u]=(out==0)?0:dep[u],out;
} //基本和 FF / EK 一样

int main(){
	n=read(),m=read(),s=read(),t=read();
	while(m--) {
		int u=read(),v=read(),w=read();
		G[u].push_back(make_pair(v,w));
		G[v].push_back(make_pair(u,0));
	} while(bfs()) ans+=dfs(s,2e9); //这里如果交 LOJ 要把 2e9 适当开大 , 实测 2e12 可以通过
	printf("%d\n",ans); //交 LOJ 要把 %d 改成 %lld
	return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值