P4619 [SDOI2018]旧试题 题解

18 篇文章 1 订阅
8 篇文章 0 订阅

博客园同步

原题链接

简要题意:

∑ i = 1 A ∑ j = 1 B ∑ k = 1 C d ( i j k ) \sum_{i=1}^A \sum_{j=1}^B \sum_{k=1}^C d(ijk) i=1Aj=1Bk=1Cd(ijk)

其中 d ( x ) d(x) d(x) 表示 x x x 的因数个数。

一言不合就推式子!

∑ i = 1 A ∑ j = 1 B ∑ k = 1 C d ( i j k ) \sum_{i=1}^A \sum_{j=1}^B \sum_{k=1}^C d(ijk) i=1Aj=1Bk=1Cd(ijk)

= ∑ i = 1 A ∑ j = 1 B ∑ k = 1 C ∑ x = 1 i ∑ y = 1 j ∑ z = 1 k [ gcd ⁡ ( i , j ) = = 1 ] [ gcd ⁡ ( i , k ) = = 1 ] [ gcd ⁡ ( j , k ) = = 1 ] = \sum_{i=1}^A \sum_{j=1}^B \sum_{k=1}^C \sum_{x=1}^i \sum_{y=1}^j \sum_{z=1}^k [\gcd(i,j)==1] [\gcd(i,k)==1] [\gcd(j,k)==1] =i=1Aj=1Bk=1Cx=1iy=1jz=1k[gcd(i,j)==1][gcd(i,k)==1][gcd(j,k)==1]

= ∑ x = 1 A ∑ y = 1 B ∑ z = 1 C [ gcd ⁡ ( x , y ) = = 1 ] [ gcd ⁡ ( x , z ) = = 1 ] [ gcd ⁡ ( y , z ) = = 1 ] ⌊ A x ⌋ ⌊ B y ⌋ ⌊ C z ⌋ = \sum_{x=1}^A \sum_{y=1}^B \sum_{z=1}^C [\gcd(x,y)==1] [\gcd(x,z)==1] [\gcd(y,z)==1] \lfloor \frac{A}{x} \rfloor \lfloor \frac{B}{y} \rfloor \lfloor \frac{C}{z} \rfloor =x=1Ay=1Bz=1C[gcd(x,y)==1][gcd(x,z)==1][gcd(y,z)==1]xAyBzC

= ∑ i = 1 A ∑ j = 1 B ∑ k = 1 C [ gcd ⁡ ( i , j ) = = 1 ] [ gcd ⁡ ( i , k ) = = 1 ] [ gcd ⁡ ( j , k ) = = 1 ] ⌊ A i ⌋ ⌊ B j ⌋ ⌊ C k ⌋ = \sum_{i=1}^A \sum_{j=1}^B \sum_{k=1}^C [\gcd(i,j)==1] [\gcd(i,k)==1] [\gcd(j,k)==1] \lfloor \frac{A}{i} \rfloor \lfloor \frac{B}{j} \rfloor \lfloor \frac{C}{k} \rfloor =i=1Aj=1Bk=1C[gcd(i,j)==1][gcd(i,k)==1][gcd(j,k)==1]iAjBkC

= ∑ i = 1 A ∑ j = 1 B ∑ k = 1 C ⌊ A i ⌋ ⌊ B j ⌋ ⌊ C k ⌋ ∑ u ∣ gcd ⁡ ( i , j ) μ u ∑ v ∣ gcd ⁡ ( i , k ) μ v ∑ w ∣ gcd ⁡ ( j , k ) μ k = \sum_{i=1}^A \sum_{j=1}^B \sum_{k=1}^C \lfloor \frac{A}{i} \rfloor \lfloor \frac{B}{j} \rfloor \lfloor \frac{C}{k} \rfloor \sum_{u| \gcd(i,j)} \mu_u \sum_{v| \gcd(i,k)} \mu_v \sum_{w|\gcd(j,k)} \mu_k =i=1Aj=1Bk=1CiAjBkCugcd(i,j)μuvgcd(i,k)μvwgcd(j,k)μk

= ∑ u = 1 min ⁡ ( A , B ) μ u ∑ v = 1 min ⁡ ( A , C ) μ v ∑ w = 1 min ⁡ ( B , C ) μ w ∑ gcd ⁡ ( u , v ) ∣ i A ⌊ A i ⌋ ∑ gcd ⁡ ( u , w ) ∣ j B ⌊ B j ⌋ ∑ gcd ⁡ ( v , w ) ∣ k C ⌊ C k ⌋ = \sum_{u=1}^{\min(A,B)} \mu_u \sum_{v=1}^{\min(A,C)} \mu_v \sum_{w=1}^{\min(B,C)} \mu_w \sum_{\gcd(u,v)|i}^A \lfloor \frac{A}{i} \rfloor \sum_{\gcd(u,w)|j}^B \lfloor \frac{B}{j} \rfloor \sum_{\gcd(v,w)|k}^C \lfloor \frac{C}{k} \rfloor =u=1min(A,B)μuv=1min(A,C)μvw=1min(B,C)μwgcd(u,v)iAiAgcd(u,w)jBjBgcd(v,w)kCkC

算法一

我会暴力!

时间复杂度: O ( n 3 ) O(n^3) O(n3). 实际得分: 0 p t 0pt 0pt.

恭喜你,一长串式子白推了

算法二

推式子基本结束了,你会发现,式子长得可怕,这并不是我们 A A A 题的前兆!比方说 二元弱化版 本人也写了 题解,可是弱化版推的最后式子很简单啊!

所以首先我们分析,如果就这个式子枚举, O ( n 3 ) O(n^3) O(n3) 是跑不掉的。因为我们没有消掉一个 ∑ \sum ,反而按照 所谓的莫比乌斯反演套路 增加了 ∑ \sum .

f y , x = ∑ x ∣ i y ⌊ y i ⌋ f_{y,x} = \sum_{x|i}^y \lfloor \frac{y}{i} \rfloor fy,x=xiyiy

将原式后面的一长串简化:
∑ u = 1 min ⁡ ( A , B ) μ u ∑ v = 1 min ⁡ ( A , C ) μ v ∑ w = 1 min ⁡ ( B , C ) μ w ∑ gcd ⁡ ( u , v ) ∣ i A ⌊ A i ⌋ ∑ gcd ⁡ ( u , w ) ∣ j B ⌊ B j ⌋ ∑ gcd ⁡ ( v , w ) ∣ k C ⌊ C k ⌋ \sum_{u=1}^{\min(A,B)} \mu_u \sum_{v=1}^{\min(A,C)} \mu_v \sum_{w=1}^{\min(B,C)} \mu_w \sum_{\gcd(u,v)|i}^A \lfloor \frac{A}{i} \rfloor \sum_{\gcd(u,w)|j}^B \lfloor \frac{B}{j} \rfloor \sum_{\gcd(v,w)|k}^C \lfloor \frac{C}{k} \rfloor u=1min(A,B)μuv=1min(A,C)μvw=1min(B,C)μwgcd(u,v)iAiAgcd(u,w)jBjBgcd(v,w)kCkC

= ∑ u = 1 min ⁡ ( A , B ) μ u ∑ v = 1 min ⁡ ( A , C ) μ v ∑ w = 1 min ⁡ ( B , C ) μ w f A ( gcd ⁡ ( u , v ) ) f B ( gcd ⁡ ( u , w ) ) f C ( gcd ⁡ ( v , w ) ) = \sum_{u=1}^{\min(A,B)} \mu_u \sum_{v=1}^{\min(A,C)} \mu_v \sum_{w=1}^{\min(B,C)} \mu_w f_A(\gcd(u,v)) f_B(\gcd(u,w)) f_C(\gcd(v,w)) =u=1min(A,B)μuv=1min(A,C)μvw=1min(B,C)μwfA(gcd(u,v))fB(gcd(u,w))fC(gcd(v,w))

这只是看起来简单了,实质上, O ( n log ⁡ n ) O(n \log n) O(nlogn) 预处理 f f f 可以办到,但是就当前式子,大力枚举还是 O ( n 3 ) O(n^3) O(n3),没有一点部分分可拿。这是令人痛苦的地方。

时间复杂度: O ( n 3 ) O(n^3) O(n3). 实际得分: 0 p t 0pt 0pt.

算法三

越接近答案的推导,就显得越困难。现在我们到了黎明前那个最黑暗的时刻。

我们考虑,什么时候 u , v , w u,v,w u,v,w 对答案没有贡献

显然, μ u = 0 \mu_u = 0 μu=0 μ v = 0 \mu_v=0 μv=0 μ w = 0 \mu_w=0 μw=0 都会没有贡献。

f y ( x ) = 0 f_y(x) = 0 fy(x)=0,就需要 gcd ⁡ ( u , v ) > A \gcd(u,v)>A gcd(u,v)>A gcd ⁡ ( u , w ) > B \gcd(u,w)>B gcd(u,w)>B gcd ⁡ ( v , w ) > C \gcd(v,w)>C gcd(v,w)>C.

似乎情况还蛮多的?

所以我们考虑感性一点,枚举 gcd ⁡ = g \gcd=g gcd=g,然后 u = i g , v = j g u=ig , v=jg u=ig,v=jg 合法 当且仅当 gcd ⁡ ( i , j ) = 1 , μ u × μ v ≠ 0 , lcm ⁡ u , v = i j g ≤ max ⁡ ( a , b , c ) \gcd(i,j)=1 , \mu_u \times \mu_v \not = 0 , \operatorname{lcm}{u,v}=ijg \leq \max(a,b,c) gcd(i,j)=1,μu×μv=0,lcmu,v=ijgmax(a,b,c).

对于合法的 u , v u,v u,v 连边,我们就得到了一张图。

那么合法的情况是怎样的?即 u → v , u → w , v → w u \rightarrow v , u \rightarrow w , v \rightarrow w uv,uw,vw 在原图中同时存在。

即需要求出原图的 三元环个数,可以参考 不常用的黑科技——「三元环」,在 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间求解。

那么, n = ? n = ? n=?,也就是这个图的边数会不会很大呢?

一位叫做 shadowice1984 \text{shadowice1984} shadowice1984 的人告诉我们边数最多只有 760741 760741 760741 条,所以就放心吧!

对于后面的一堆东西用 整除分块 可以实现。

对于 n = 7.5 × 1 0 5 n=7.5 \times 10^5 n=7.5×105,用 n n n \sqrt{n} nn 整除分块 需要格外小心,常数很危险,需要反复卡常才能过 ⋯ ⋯ \cdots \cdots

本人在卡常 15 15 15 次后 AC \text{AC} AC 了本题。。 把几乎同样的代码不断提交

时间复杂度: O ( n n × T ) O(n \sqrt {n} \times T) O(nn ×T).

其中 n ≤ 7.5 × 1 0 5 n \leq 7.5 \times 10^5 n7.5×105.

期望得分: 100 p t s 100pts 100pts. 实际得分: 70 70 70 ~ 100 p t s 100pts 100pts.(取决于常数)

如果你交我代码发现A不了,只能说你人品差了

// i=-~i 是 i++ 的优化
// 所有 min , max , gcd 手写卡常
// register 寄存器用来优化
// 一段 GCC 优化模板
#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(5000)
#pragma GCC optimize(100000000)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll N=8e5+5,MOD=1e9+7;

inline ll read(){char ch=getchar(); ll f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

ll a,b,c,T,cnt,tot,ans;
ll lst[N],d[N],p[N],mu[N],ok[N],ord[N],deg[N],f[N],from[N],to[N],lcm[N],mrk[N];
vector<ll>v[N],w[N];
inline ll min(ll a,ll b){return a<b?a:b;}
inline ll max(ll a,ll b){return a>b?a:b;}
inline ll gcd(ll a,ll b){return (!b)?a:gcd(b,a%b);}

int main() {
    p[1]=mu[1]=1;
	for(register int i=2;i<N;i=-~i) {
        if(!p[i]) lst[++cnt]=i,mu[i]=-1;
        for(register int j=1;j<=cnt;j=-~j){
            if(i*lst[j]>=N) break;
            p[i*lst[j]]=1;
            if(i%lst[j]==0) {mu[i*lst[j]]=0;break;}
            mu[i*lst[j]]=-mu[i];
        }
    } for(register int i=1;i<N;i=-~i)
        if(mu[i]) ok[++tot]=i,ord[i]=tot;
    for(register int i=1;i<N;i=-~i) {
        for(register int j=1;i*j<N;j=-~j) d[i*j]++;
        f[i]=(f[i-1]+d[i])%MOD;
    } T=read();
    while(T--) {
        memset(deg,0,sizeof(deg));
        memset(v,0,sizeof(v));
        memset(w,0,sizeof(w));
        a=read(),b=read(),c=read();
        ll mn=min(min(a,b),c),mx=max(max(a,b),c);
        ll e=ans=0;
        for(register int i=1;i<=tot;i=-~i){
            if(ok[i]>mx) break;
            for(register int j=1;j<=tot;j=-~j){
                if(ok[i]*ok[j]>mx) break;
                if(!mu[ok[i]*ok[j]]) continue;
                for(register int k=j+1;k<=tot;k=-~k){
                    if(ok[i]*ok[j]*ok[k]>mx) break;
                    if(mu[ok[i]*ok[k]]==0||gcd(ok[j],ok[k])>1) continue;
                    from[++e]=ord[ok[i]*ok[j]],to[e]=ord[ok[i]*ok[k]],lcm[e]=ok[i]*ok[j]*ok[k];
                    deg[from[e]]++,deg[to[e]]++;
                } 
            }
        }
        for(register int i=1;i<=tot;i=-~i) {
            if(ok[i]>mn) break;
            ans+=mu[ok[i]]*mu[ok[i]]*mu[ok[i]]*f[a/ok[i]]*f[b/ok[i]]*f[c/ok[i]];
        }
        for(register int i=1;i<=e;i=-~i) {
            v[from[i]].push_back(to[i]),w[from[i]].push_back(lcm[i]);
            v[to[i]].push_back(from[i]),w[to[i]].push_back(lcm[i]);
        }
        for(register int i=1;i<=tot;i=-~i) {
            if(ok[i]>min(a,b)) break;
            for(register int j=0;j<v[i].size();j=-~j) {
                ll x=ok[i],y=ok[v[i][j]],z=w[i][j];
                ans=(ans+mu[x]*mu[y]*mu[y]*f[a/z]*f[b/z]*f[c/y]);
                ans=(ans+mu[x]*mu[x]*mu[y]*f[a/x]*f[b/z]*f[c/z]);
                ans=(ans+mu[x]*mu[x]*mu[y]*f[a/z]*f[b/x]*f[c/z]);
            }
        } ans=(ans+MOD)%MOD;
        memset(v,0,sizeof(v));
        memset(w,0,sizeof(w));
        for(register int i=1;i<=e;i=-~i) {
            if(deg[from[i]]>=deg[to[i]]) v[from[i]].push_back(to[i]),w[from[i]].push_back(lcm[i]);
            else v[to[i]].push_back(from[i]),w[to[i]].push_back(lcm[i]);
        }
        for(register int i=1;i<=tot;i=-~i) {
            if(ok[i]>mx) break;
            for(register int j=0;j<v[i].size();j=-~j) mrk[v[i][j]]=w[i][j];
            for(register int j=0;j<v[i].size();j=-~j){
                ll x=v[i][j];
                for(register int k=0;k<v[x].size();k=-~k){
                    ll y=v[x][k],p=mrk[y],q=w[i][j],r=w[x][k];
                    if(!mrk[y]) continue;
                    ll st1,st2,st3,st4,st5,st6;
                    st1=f[a/p]*f[b/q]*f[c/r];
                    st2=f[a/p]*f[b/r]*f[c/q];
                    st3=f[a/q]*f[b/p]*f[c/r];
                    st4=f[a/q]*f[b/r]*f[c/p];
                    st5=f[a/r]*f[b/p]*f[c/q];
                    st6=f[a/r]*f[b/q]*f[c/p];
                    ans=(ans+mu[ok[i]]*mu[ok[x]]*mu[ok[y]]*(st1+st2+st3+st4+st5+st6)+MOD)%MOD;
                }
            } for(register int j=0;j<v[i].size();j=-~j) mrk[v[i][j]]=0;
        }
        printf("%lld\n",(ans+MOD)%MOD);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值