CF230B T-primes 题解

博客介绍了如何判断一个数是否只有3个因数,通过分析因数对和完全平方数性质,得出结论:该数必须是完全平方数且其平方根的因数个数为质数。提供了利用欧拉筛法解决此类问题的方法,适用于不超过10^12的数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博客园同步

原题链接

简要题意:

判断一个数是否只有 3 3 3 个因数。

首先,如果一个数有奇数个因数,那么这个数是完全平方数。

道理很简单:因数是成对的,那么必然存在 k 2 = n k^2 = n k2=n,此时 k k k 就是单个的, n n n 就是完全平方数。

但是,你会发现,并不是所有的完全平方数都一定有三个因数。

比方说: 36 36 36.

1   2   3   4   6   9   12   18   36 1 \space 2 \space 3 \space 4 \space6 \space 9 \space 12 \space 18 \space 36 1 2 3 4 6 9 12 18 36

一看这么多因数就不是3个

显然,我们发现:

n = k 2 n = k ^ 2 n=k2,用 f n f_n fn 表示 n n n 的因数个数,则:

f n = 2 × f k − 1 f_n = 2 \times f_k-1 fn=2×fk1

原因也很简单:因数是成对出现的,减去重复的 k k k 一个。

那么,此时;

2 × f k − 1 = 3 2 \times f_k - 1 = 3 2×fk1=3

f k = 2 f_k = 2 fk=2

也就是 f k f_k fk 是质数!

我们发现, n ≤ 1 0 12 n \leq 10^{12} n1012,则 k ≤ n ≤ 1 0 6 k \leq \sqrt{n} \leq 10^6 kn 106.

显然,我们可以欧拉筛出 ≤ 1 0 6 \leq 10^6 106 的质数表,然后 O ( 1 ) O(1) O(1) 判断。

综上:

n n n 不是完全平方数,或者 n \sqrt{n} n 不是质数时,答案为 NO \texttt{NO} NO.

否则答案为 YES \texttt{YES} YES.

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=1e6+1;

inline ll read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

bool h[N];
int prime[N],f=0;

inline void Euler() {
	h[1]=1;
	for(int i=2;i<N;i++) {
		if(!h[i]) prime[++f]=i;
		for(int j=1;j<=f && i*prime[j]<N;j++) {
			h[i*prime[j]]=1;
			if(i%prime[j]==0) break;
		}
	}
} //欧拉筛模板

int main(){
	int T=read(); Euler(); while(T--) {
		ll n=read();
		if(n==1) puts("NO");
		else {
			ll q=sqrt(n);
			if(q*q-n || h[q]) puts("NO");
			else puts("YES");
		}
	}
	return 0;
}

洛谷上竟然标蓝题,我谔谔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值