P2260 [清华集训2012]模积和 题解

P2260模积和题解:整除分块求解
博客探讨了如何高效计算P2260题目中涉及的模积和问题,通过多项式展开和整除分块的方法,实现了O(n)的时间复杂度解决方案。详细介绍了计算过程,包括避免溢出的策略,并指出这种方法适用于100分的数据规模。

博客园同步

原题链接

简要题意:

给定 n , m n,m n,m,求:

∑ i = 1 n ∑ j = 1 m ( n  mod  i ) × ( m  mod  j ) , i ≠ j \sum_{i=1}^n \sum_{j=1}^m (n \space \text{mod} \space i) \times (m \space \text{mod} \space j) , i \not = j i=1nj=1m(n mod i)×(m mod j),i=j

n , m ≤ 1 0 9 n,m \leq 10^9 n,m109.

我们直接奔着 100 100 100 分的数据去吧,不要看部分分,部分分就没意思。

这个式子的瓶颈在于 n  mod  i n \space \text{mod} \space i n mod i 的展开问题。所以只需要用 n  mod  i = n − ⌊ n i ⌋ × i n \space \text{mod} \space i = n - \lfloor \frac{n}{i} \rfloor \times i n mod i=nin×i ,然后灵活用多项式的拆开与合并,一波整除分块带走即可。

首先说好,这一次的推式子没有 莫比乌斯反演,也没有 奇怪的筛法,有的只是 多项式的灵活展开 与 整除分块

于是我们开始推式子。

∑ i = 1 n ∑ j = 1 m ( n  mod  i ) × ( m  mod  j ) , i ≠ j \sum_{i=1}^n \sum_{j=1}^m (n \space \text{mod} \space i) \times (m \space \text{mod} \space j) , i \not = j i=1nj=1m(n mod i)×(m mod j),i=j

= ∑ i = 1 n ∑ j = 1 m ( n − ⌊ n i ⌋ × i ) × ( m − ⌊ m j ⌋ × j ) , i ≠ j = \sum_{i=1}^n \sum_{j=1}^m (n - \lfloor \frac{n}{i} \rfloor \times i) \times (m - \lfloor \frac{m}{j} \rfloor \times j) , i \not = j =i=1nj=1m(nin×i)×(mjm×j),i=j

= ∑ i = 1 n ( n − ⌊ n i ⌋ × i ) × ∑ j = 1 m ( m − ⌊ m j ⌋ × j ) , i ≠ j = \sum_{i=1}^n (n - \lfloor \frac{n}{i} \rfloor \times i) \times \sum_{j=1}^m (m - \lfloor \frac{m}{j} \rfloor \times j) , i \not = j =i=1n(nin×i)×j=1m(mj

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值