【Problem】
给定 n,m n , m ,求值:
n,m≤1e+9 n , m ≤ 1 e + 9
【Solution】
首先根据蒟蒻的的做题经验,求模值的和一定要转换
amodb=a−b⌊ab⌋ a mod b = a − b ⌊ a b ⌋
则 ∑ni=1nmodi=∑ni=1(n−i⌊ni⌋) ∑ i = 1 n n mod i = ∑ i = 1 n ( n − i ⌊ n i ⌋ )
其中类似于莫比乌斯反演的分块优化, ⌊ni⌋ ⌊ n i ⌋ 的取值在一端区间内是相等的,所以对于式子 ∑ni=1nmodi ∑ i = 1 n n mod i 可以在 n−−√ n 的时间内求解
那么尝试着将原式变换:
其中 [∑ni=1(n−i⌊ni⌋)][∑mj=1(m−j⌊mj⌋)] [ ∑ i = 1 n ( n − i ⌊ n i ⌋ ) ] [ ∑ j = 1 m ( m − j ⌊ m j ⌋ ) ] 可以在 O(n−−√+m−−√) O ( n + m ) 的时间内求解,接下来考虑右边的项
假设 n<m n < m ,拆分式子:
其中第一项等于 n2m n 2 m ,第二三项可以用前面的方法 O(n−−√) O ( n ) 求解,接下来考虑第四项:
明显可以类似于莫比乌斯反演的分块优化求解,但需要求解 ∑ri=li2 ∑ i = l r i 2 ,有一个小公式: ∑ni=1=n(n+1)(2n+1)6 ∑ i = 1 n = n ( n + 1 ) ( 2 n + 1 ) 6 前缀相减即可
【Code】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rg register
#define cl(x) memset(x,0,sizeof(x))
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)>0?(x):(-(x)))
const ll p(19940417);
template <typename _Tp> inline _Tp read(_Tp&x){
rg char c11=getchar(),ob=0;x=0;
while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
}
inline ll sum(ll x){
ll mul=(x*(x+1)>>1);
if(mul%3==0){
mul=(mul/3)%p;
mul=mul*(x<<1|1)%p;
}
else mul=mul%p*(((x<<1|1)/3)%p)%p;
return mul;
}
int main(){
ll n,m;
scanf("%lld%lld",&n,&m);
ll ans(0),mul1(n*n),mul2(m*m);
for(rg ll i=1,j;i<=n;i=j+1){
j=min(n/(n/i),n);
mul1=(mul1-((j-i+1)*(i+j)>>1)*(n/i)%p+p)%p;
}
for(rg ll i=1,j;i<=m;i=j+1){
j=min(m/(m/i),m);
mul2=(mul2-((j-i+1)*(i+j)>>1)*(m/i)%p+p)%p;
}
ans=mul1*mul2%p;
if(n>m)swap(n,m);
ans=(ans-(n*n%p*m%p)+p)%p;
mul1=mul2=0;
for(rg ll i=1,j;i<=n;i=j+1){
j=min(n/(n/i),n);
mul1=(mul1+m*(((j-i+1)*(i+j)>>1)*(n/i)%p)%p)%p;
}
for(rg ll i=1,j;i<=n;i=j+1){
j=min(m/(m/i),n);
mul2=(mul2+n*(((j-i+1)*(i+j)>>1)*(m/i)%p)%p)%p;
}
ans=(ans+mul1+mul2)%p;
for(rg ll i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=(ans-(n/i)*(m/i)%p*(sum(j)-sum(i-1)+p)%p+p)%p;
}
printf("%lld\n",(ans+p*10)%p);
return 0;
}