【BZOJ-2956】(清华集训2012)模积和

题目链接

题目描述

((nmodi)(mmodj))1<=i<=n,1<=j<=m,ij ∑ ∑ ( ( n m o d i ) ∗ ( m m o d j ) ) 其 中 1 <= i <= n , 1 <= j <= m , i ≠ j

例如对于 n=3,m=4 :
答案为(3 mod 1)(4 mod 2)+(3 mod 1) (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1

题解

可以先去做做余数求和 ,我的题解

一开始看漏了 ij i ≠ j ,以为这和余数求和一样…
但是既然又和取模的和有关,与余数求和的思想是差不多的。
我们有 amodb=afloor(a/b)b a m o d b = a − f l o o r ( a / b ) ∗ b
于是我们再来推一波式子:

i=1nj=1,jim((nmodi)(mmodj)) ∑ i = 1 n ∑ j = 1 , j ≠ i m ( ( n m o d i ) ∗ ( m m o d j ) )

=((nmodi)(mmodj))min(n,m)i=1((nmodi)(mmodi)) = ∑ ∑ ( ( n m o d i ) ∗ ( m m o d j ) ) − ∑ i = 1 m i n ( n , m ) ( ( n m o d i ) ∗ ( m m o d i ) )

前面那段就是余数求和的方法,不多讲,我们来看后面一段。
不妨设 nm n ≤ m
那么:
ni=1((nmodi)(mmodi)) ∑ i = 1 n ( ( n m o d i ) ∗ ( m m o d i ) )
=((nn/ii)(mm/ii)) = ∑ ( ( n − n / i ∗ i ) ∗ ( m − m / i ∗ i ) )
n/i=x,m/i=y n / i = x , m / i = y
原式化为:
(mnmxinyi+xyi2) ∑ ( m n − m x i − n y i + x y ∗ i 2 )
(mn+xyi2(mx+ny)i) ∑ ( m n + x y ∗ i 2 − ( m x + n y ) ∗ i )

到这里式子已经推的差不多了。
我们发现可以对 x,y x , y 进行除法分块,且前面的mn可以预先处理掉。
于是我们着眼于求出一个块内的 (xyi2(mx+ny)i) ( x y ∗ i 2 − ( m x + n y ) ∗ i )
假定当前块内 xy=S1,mx+ny=S2 x y = S 1 , m x + n y = S 2
那么要求的就是:
S1i2S2i S 1 ∗ i 2 − S 2 ∗ i
前面这一坨要用到平方和公式即: ni=1(i2)=n(n+1)(2n+1)/6 ∑ i = 1 n ( i 2 ) = n ∗ ( n + 1 ) ∗ ( 2 n + 1 ) / 6
注意这里要求个逆元。
后面的直接等差数列求和即可,那么本题就做完了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<set>
using namespace std;
typedef long long ll;
const int N=1e9+10;
const ll mod=19940417;
const ll inv=3323403;//6的逆元
inline ll Mod_sum(ll k,ll n)
{
    ll ans=n*k;
    register ll l=1,r=0;
    for(l=1;l<=n;l=r+1)
    {
        if(k/l!=0) r=min(k/(k/l),n);
        else r=n;
        ans-=((k/l)*(r-l+1)*(l+r)/2)%mod;
        if(ans<0) ans+=mod;
    }
    return ans%mod;
}
inline ll sum(ll l,ll r)
{
    return ((r+l)*(r-l+1)/2)%mod;
}
inline ll sum2(ll n)
{
    if(n==0) return 0;
    if(n==1) return 1;
    return ((n*(n+1)%mod)*(2*n%mod+1)%mod)*inv%mod;
}
int main()
{
    register ll ans=0;ll n,m;
    scanf("%lld %lld",&n,&m);
    ans=Mod_sum(n,n);
    ans*=Mod_sum(m,m);
    if(n>m) swap(n,m);
    ans-=(n*(m*n%mod))%mod;
    ans=(ans+mod)%mod;
    ll l;ll r=0;
    for(l=1;l<=n;l=r+1){
        r=min(m/(m/l),n/(n/l));//取两个都相同的块
        register ll s1=((m/l)*(n/l)%mod)*((sum2(r)-sum2(l-1)+mod)%mod)%mod;//平方和公式
        register ll s2=(((n*(m/l)%mod+m*(n/l)%mod)%mod)*sum(l,r))%mod;
        ans=(ans-(s1-s2+mod)+mod)%mod;
    }
    while(ans<0) ans+=mod;
    printf("%lld\n",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值