欠拟合、过拟合、优化器

1.欠拟合与过拟合

 2.欠拟合、过拟合的解决方法

(1)欠拟合的解决方法:

  • 增加输入特征项
  • 增加网络参数
  • 减少正则化参数

(2)过拟合的解决方式

  • 数据清洗
  • 增大训练集
  • 采用正则化
  • 增大正则化参数

3.正则化缓解过拟合

正则化再损失函数中引入模型复杂度指标,利用给w加权值,弱化了训练数据的噪声(一般不正则化b)。

正则化以后loss变成由两个部分组成。

4.神经网络优化器

 4.1SGD 

# SGD优化鸢尾花数据集分类


from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import time # 为了比较五种优化器的速度引入时间模块

import os
import PySide2

dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path

# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和

# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)

# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类

# ____________________________训练部分:嵌套循环迭代_______________________
now_time = time.time()  # 用时间戳记录训练起始时间
for epoch in range(epoch):  # 数据集级别迭代
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代
        with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失loss
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和acc
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSE
            loss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b1自更新

    # 求出每个epoch的平均损失
    print("Epoch {}, loss:{}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备

    # ____________________________测试部分:识别准确率______________________________
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        y = tf.matmul(x_test, w1) + b1  # y为预测结果
        y = tf.nn.softmax(y)  # y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确
        correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来
        total_correct += int(correct)  # 将所有batch中的correct数加起来
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("test_acc", acc)
    print("__________________________")

total_time = time.time()-now_time   # 用时间戳记录结束时间
print("total_time", total_time)   # 打印所用总时间

# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

      

 

运发现用SGD优化运行时间是3.7s

4.2 SGDM

# SGDM优化鸢尾花分类

from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import time # 为了比较五种优化器的速度引入时间模块

import os
import PySide2

dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path

# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和

##########################################################
# 加入超参数
m_w, m_b = 0, 0
beta = 0.9
#########################################################



# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)

# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类

# ____________________________训练部分:嵌套循环迭代_______________________
now_time = time.time()  # 用时间戳记录训练起始时间
for epoch in range(epoch):  # 数据集级别迭代
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代
        with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失loss
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和acc
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSE
            loss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        ################################################################
        # SGDM更新优化器
        m_w = beta * m_w + (1 - beta) * grads[0]
        m_b = beta * m_b + (1 - beta) * grads[1]
        w1.assign_sub(lr * m_w)
        b1.assign_sub(lr * m_b)
        ################################################################

    # 求出每个epoch的平均损失
    print("Epoch {}, loss:{}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备

    # ____________________________测试部分:识别准确率______________________________
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        y = tf.matmul(x_test, w1) + b1  # y为预测结果
        y = tf.nn.softmax(y)  # y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确
        correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来
        total_correct += int(correct)  # 将所有batch中的correct数加起来
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("test_acc", acc)
    print("__________________________")

total_time = time.time()-now_time   # 用时间戳记录结束时间
print("total_time", total_time)   # 打印所用总时间

# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

 

发现SGDM耗时4.15s

4.3 Adagrad优化器

from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import time # 为了比较五种优化器的速度引入时间模块

import os
import PySide2

dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path

# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和

#############################################################
# 加入超参数
v_w, v_b = 0, 0

#############################################################


# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)

# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类

# ____________________________训练部分:嵌套循环迭代_______________________
now_time = time.time()  # 用时间戳记录训练起始时间
for epoch in range(epoch):  # 数据集级别迭代
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代
        with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失loss
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和acc
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSE
            loss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        #############################################################
        # Adagram
        v_w += tf.square(grads[0])
        v_b += tf.square(grads[1])
        w1.assign_sub(lr * grads[0] / tf.sqrt(v_w))
        b1.assign_sub(lr * grads[1] / tf.sqrt(v_b))
        #############################################################


    # 求出每个epoch的平均损失
    print("Epoch {}, loss:{}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备

    # ____________________________测试部分:识别准确率______________________________
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        y = tf.matmul(x_test, w1) + b1  # y为预测结果
        y = tf.nn.softmax(y)  # y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确
        correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来
        total_correct += int(correct)  # 将所有batch中的correct数加起来
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("test_acc", acc)
    print("__________________________")

total_time = time.time()-now_time   # 用时间戳记录结束时间
print("total_time", total_time)   # 打印所用总时间

# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

 

 

 4.4 RMSProp

from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import time # 为了比较五种优化器的速度引入时间模块

import os
import PySide2

dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path

# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和

#################################################################
# 超参数
v_m, v_b = 0, 0
beta = 0.9

#################################################################


# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)

# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类

# ____________________________训练部分:嵌套循环迭代_______________________
now_time = time.time()  # 用时间戳记录训练起始时间
for epoch in range(epoch):  # 数据集级别迭代
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代
        with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失loss
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和acc
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSE
            loss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        #######################################################################
        # 写RMSPro优化器
        v_m = beta * v_m + (1 - beta) * tf.square(grads[0])
        v_b = beta * v_b + (1 - beta) * tf.square(grads[1])

        w1.assign_sub(lr * grads[0] / tf.sqrt(v_m))
        b1.assign_sub(lr * grads[1] / tf.sqrt(v_b))
        #######################################################################

    # 求出每个epoch的平均损失
    print("Epoch {}, loss:{}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备

    # ____________________________测试部分:识别准确率______________________________
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        y = tf.matmul(x_test, w1) + b1  # y为预测结果
        y = tf.nn.softmax(y)  # y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确
        correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来
        total_correct += int(correct)  # 将所有batch中的correct数加起来
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("test_acc", acc)
    print("__________________________")

total_time = time.time()-now_time   # 用时间戳记录结束时间
print("total_time", total_time)   # 打印所用总时间

# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

 

 

 这种方式可通过减小学习率解决

4.5 Adam

from sklearn.datasets import load_iris
from pandas import DataFrame
import pandas as pd
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
import time # 为了比较五种优化器的速度引入时间模块

import os
import PySide2

dirname = os.path.dirname(PySide2.__file__)
plugin_path = os.path.join(dirname, 'plugins', 'platforms')
os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = plugin_path

# 定义超参数和画图用的两个存数据的空列表
lr = 0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 300
loss_all = 0  # 每轮分为4个step(因为一共有120个训练数据,每个batch有32个样本,所以epoch迭代一次120个数据需要4个batch),loss_all记录四个step生成的4个loss的和

#############################################################
# 加入超参数
m_w, m_b = 0, 0
v_w, v_b = 0, 0
beta1, beta2 = 0.9, 0.999
delta_w, delta_b = 0, 0
global_step = 0
#############################################################


# ____________________________数据准备______________________________
# 1.数据集的读入
x_data = load_iris().data  # 返回iris数据集所有输入特征
y_data = load_iris().target  # 返回iris数据集所有标签
# print("x_data from datasets:", x_data)
# print("y_data from datasets", y_data)

# 2.数据集乱序
np.random.seed(116)  # 使用相同的种子seed,使得乱序后的数据特征和标签仍然可以对齐
np.random.shuffle(x_data)  # 打乱数据集
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 3.数据集分出永不相见的训练集和测试集
x_train = x_data[:-30]  # 前120个数据作为训练集
y_train = y_data[:-30]  # 前120个标签作为训练集标签
x_test = x_data[-30:]  # 后30个数据集作为测试集
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因为数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# 配成【输入特征, 标签】对,每次喂入一小撮(batch)(把数据集分为批次,每批次32组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# ____________________________定义神经网络______________________________
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))  # 4表示输入的4的特征,3表示3分类
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))  # 3表示3分类

# ____________________________训练部分:嵌套循环迭代_______________________
now_time = time.time()  # 用时间戳记录训练起始时间
for epoch in range(epoch):  # 数据集级别迭代
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别迭代

        ###########################################################
        global_step += 1
        ###########################################################
        with tf.GradientTape() as tape:  # 在with结构中计算前向传播y以及计算总损失loss
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可以相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和acc
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均值方差损失函数MSE
            loss_all += loss.numpy()  # 将每个step计算出loss累加,为后续求loss平均值提供数据
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])  # 损失函数loss分别对参数w1和b1计算偏导数
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        #############################################################
        # Adam
        m_w = beta1 * m_w +(1 - beta1) * grads[0]
        m_b = beta1 * m_b +(1 - beta1) * grads[1]
        v_w = beta2 * v_w + (1 - beta2) * tf.square(grads[0])
        v_b = beta2 * v_b + (1 - beta2) * tf.square(grads[1])

        m_w_correction = m_w / (1 - tf.pow(beta1, int(global_step)))
        m_b_correction = m_b / (1 - tf.pow(beta1, int(global_step)))
        v_w_correction = v_w / (1 - tf.pow(beta2, int(global_step)))
        v_b_correction = v_b / (1 - tf.pow(beta2, int(global_step)))

        w1.assign_sub(lr * m_w_correction / tf.sqrt(v_w_correction))
        b1.assign_sub(lr * m_b_correction / tf.sqrt(v_b_correction))
        #############################################################


    # 求出每个epoch的平均损失
    print("Epoch {}, loss:{}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零为记录下一个epoch的loss做准备

    # ____________________________测试部分:识别准确率______________________________
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        y = tf.matmul(x_test, w1) + b1  # y为预测结果
        y = tf.nn.softmax(y)  # y符合概率分布
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        pred = tf.cast(pred, dtype=y_test.dtype)  # 调整数据类型与标签一致,即为把pred预测值转换为y_test数据类型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)  # 如果真实值与预测值相同,就正确
        correct = tf.reduce_sum(correct)  # 将每个batch的correct加起来
        total_correct += int(correct)  # 将所有batch中的correct数加起来
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct / total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("test_acc", acc)
    print("__________________________")

total_time = time.time()-now_time   # 用时间戳记录结束时间
print("total_time", total_time)   # 打印所用总时间

# ____________________________acc / loss 可视化___________________________
# 绘制loss曲线
plt.title("Loss Curve")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

#  绘制Accuracy曲线
plt.title("Acc Curve")
plt.xlabel("Epoch")
plt.ylabel("Acc")
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线
plt.legend()
plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI炮灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值