动态规划解决0-1背包问题

问题描述:

有3个物品,它们有各自的重量和价值是A[3, 8],B[2, 5],C[5, 12],现有给定容量5的背包,如何让背包里装入的物品具有最大的价值总和?

总体思路:

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现;

代码实现

#使用动态规划求解0-1背包问题
info = [
    [3, 8],
    [2, 5],
    [5, 12]
]
total = 5

pre_max = [0]
# 初始化C背包的容量
for i in range(1, info[-1][0]):
    pre_max.append(0)
for i in range(info[-1][0], total+1):
    pre_max.append(info[-1][1])


for k in range(len(info)-1, -1, -1):
	# k代表info中背包的索引
    new_pre_max = [0]
    start = 1
    # if k == 0:
    #     start = total
    # i表示所装的容量
    for i in range(start, total + 1):
        value_list = []
        if i >= info[k-1][0]:
            value_list.append(info[k-1][1] + pre_max[i-info[k-1][0]])
        value_list.append(pre_max[i])
        new_pre_max.append(max(value_list))
    pre_max = new_pre_max
print(max(pre_max))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值