基础智能体的进展与挑战综述
从类脑智能到具备可进化性、协作性和安全性的系统
【翻译团队】刘军(liujun@bupt.edu.cn) 钱雨欣玥 冯梓哲 李正博 李冠谕 朱宇晗 张霄天 孙大壮 黄若溪
6. 情感模型
情感是人类思考、决策和与他人互动的重要组成部分。它们帮助我们理解情境、做出选择并建立关系。Antonio Damasio 在《Descartes’ Error》一书中指出,情感并非独立于逻辑,而是与我们的推理和行为深度交织在一起[25]。在开发大型语言模型(LLM)智能体时,赋予其情感能力有望使系统变得更智能、更具适应性,并更好地理解周围世界。
对于LLM智能体而言,情感可以像在人类身上一样,成为决策工具。情感帮助我们确定任务优先级、理解风险、并适应新挑战。Marvin Minsky在《The Emotion Machine》中将情感描述为一种调整思维过程的方式,有助于我们更灵活、更有创造性地解决问题[420]。同样地,具备类情感特征的LLM智能体可能在解决复杂问题和做出更类人决策方面表现得更好。
然而,将情感整合进LLM智能体的研究仍处于早期阶段。研究人员刚开始探索情感能力如何提升这些系统的表现。此外,LLM 智能体在支持人类情绪健康方面也有巨大潜力,例如通过共情对话、心理健康支持,或是与用户建立更良好的连接。这一充满前景但又极具挑战性的领域需要心理学、认知科学与人工智能伦理等多个学科的协作。随着研究的推进,具备情感理解能力的LLM智能体可能会重新定义我们与技术的互动方式,建立更深层的信任和更有意义的人机关系。
在接下来的子章节中,我们将更深入地探讨情感在LLM智能体发展中的角色:包括情感如何提升学习能力和适应性、LLM 如何理解人类情绪、这些系统如何表达并建模自身情绪状态,还将讨论如何操控情感来影响LLM的行为和人格特质,以及由此带来的伦理和安全问题。这些探讨将共同构建一个以情感为基础的LLM智能体蓝图,使其更加智能、有同理心,并真正符合人类的价值观。
6.1 情感的心理学基础
心理学与神经科学的情绪理论为发展具有情绪智能的LLM智能体提供了基础框架。这些理论可分为几个主要流派,每种都对情绪的功能及其在AI系统中的实现方式提供了独特视角。
-
类别理论
这类理论认为情绪是离散、普遍存在的种类,每种情绪都有特定的生理和行为特征。Ekman 的基本情绪理论[421]提出六种基本情绪(愤怒、厌恶、恐惧、快乐、悲伤和惊讶),这些情绪在不同文化中都能被识别,并通过特定的面部表情表达。该离散方法对情感计算影响深远,许多AI中的情绪分类系统采用这些标签进行训练[422, 423]。对于LLM智能体而言,类别模型提供了清晰的用户情绪分类法,有助于生成恰当的回应。然而,这种方法也因过于简化人类情绪的复杂性与混合性而受到批评[424],且可能无法充分体现情绪表达的文化差异[425]。
-
维度模型
维度模型认为情绪是连续空间中的点,常用维度包括愉悦度(valence)和唤醒度(arousal)。Russell 的圆环模型(Circumplex Model)[426]以愉悦-不愉悦和激活-抑制两个维度来表示情绪。例如,它可以区分高唤醒的恐慌和低唤醒的焦虑。PAD 模型[427]在前两者基础上增加了主导性(dominance)维度,描述情绪状态中的控制感。这种连续表示适用于需要生成渐变情绪反应或追踪用户情绪微变的LLM系统[428, 429, 430],允许在更细粒度上控制生成内容的情感色彩,而非在离散状态间切换。
-
混合与成分模型
为弥补类别与维度模型的局限,部分理论整合两者的要素。例如,Plutchik 的情绪之轮[431]将八种基本情绪按强度梯度与维度属性排列,可表示复合情绪(如“爱”是“喜悦”和“信任”的混合)。Scherer 的成分过程模型(CPM)[432]则将情绪视为由认知评估、生理激活、行为倾向与主观体验等同步成分构成。影响深远的 OCC 模型(Ortony-Clore-Collins)[433]定义了基于事件、行动者与对象评估的 22 种情绪类型,已被用于对话系统的情绪生成[434, 435]。对于LLM智能体,这些模型为评估输入文本、选择情境合适的情绪反应提供了计算结构,从而增强回应的一致性与共情能力[436, 437]。
-
神经认知视角
情绪的神经科学研究也为LLM架构提供启发。Damasio 的体标记假说[25]强调身体-大脑互动如何通过情绪引导决策。边缘系统与皮层的两过程架构(如杏仁核处理快速“警报”信号,而皮层处理慢速理性推理)已在一些LLM中体现:如情绪检测模块与思维链(CoT)推理并行处理[436, 437]。此外,纹状体的对立回路可支持分布式强化学习,通过编码奖励的整个概率分布来处理不确定性[438]。LeDoux 对恐惧的“低路”和“高路”处理路径区分[24]也为既需即时响应又需细致分析的系统提供了设计模式。Minsky 将情绪定义为“思维方式”[420],这一观点影响了如 EmotionPrompt[428]和 Emotion-LLaMA[423]等LLM框架,这些系统利用情绪背景动态调整语言模型的推理方式。目前,分类模型在情绪识别中常用作情绪标签[423, 429],维度嵌入用于调控生成内容[428],混合方法则有助于处理情绪混合与强度。尤其是 OCC 等评估模型,可使LLM根据事件含义做出符合上下文的情绪回应,增强信任感与互动性[439]。神经启发的双过程架构整合了快速情绪感知与慢速推理,为LLM提供安全与深入理解的双重能力[436, 437]。尽管目前尚少见显式神经机制(如“类杏仁核”通路)在LLM流水线中实现,但已有研究探索生物启发模块,用于处理紧急情绪信号并在长时间交互中保持情绪一致性[440, 441]。
情绪是人类智能的核心,也将成为LLM智能体关键的设计组成部分之一。未来的一个重要方向,是系统性地将心理学与神经科学理论内化为LLM的内部机制。例如,可将维度模型(如愉悦度/唤醒度/主导性)作为潜在状态影响语言生成,或使用OCC的规则评价方法对用户输入进行情绪标注并引导后续响应。混合方法尤具吸引力:模型既可识别情绪类别(如“恐惧”),又能评估其强度与控制感,从而构建更连贯的对话“情绪氛围”。这种显式对心理理论的对齐还提升了可解释性,使设计者可以基于已有理论调试或优化系统行为,而非处理不透明的涌现行为。
另一个关键方向是将这些理论用于增强情感对齐能力。例如,使用Circumplex或PAD模型可帮助LLM识别用户文本中的负向高唤醒状态,并做出安抚回应(如降低唤醒度、提供共情性重评)。在心理咨询场景中,基于评估模型的方法可使LLM理解用户的目标冲突或责任归属,从而做出更具同理心的回应。将情绪输出锚定于认知理论(如负面结果被避免时表达“宽慰”,用户帮助系统时表达“感激”)也能提升自然感与伦理一致性。
随着LLM进入客服、养老、教学等现实应用场景,情绪敏感性将显著影响使用效果与用户福祉。结合心理学与边缘系统理论,开发者有望设计出不仅具备逻辑推理能力、还能提供真诚情绪支持的LLM系统,从而真正弥合计算精度与人类关怀之间的差距。
图6.1:主要情感理论分类的可视化效果和例子
6.2 情感模型融入AI智能体
将情感智能融入大语言模型(LLMs)已成为提升其性能与适应性的重要手段。最新研究如 EmotionPrompt[422]表明,在提示中嵌入情感刺激可以显著提升多种任务的结果表现,在生成类任务中的真实性与责任感等指标提升达10.9%。通过影响LLM的注意力机制,带有情感的提示能够丰富表示层,生成更细腻的输出[422]。这些进展将人工智能与情感智能连接起来,为模拟人类认知与决策过程的训练范式提供了基础,尤其适用于涉及社会推理与共情的情境。
多模态方法进一步强化了情感集成的效果。模型如Emotion-LLaMA[440]展示了通过融合音频、视觉和文本数据,模型能够更好地识别和推理情感。借助如MERR[440]数据集,这些模型将多模态输入对齐到共享表示空间,从而提升情感理解与表达能力。这一创新不仅推动语言能力的进步,也在提升人机交互和自适应学习方面展示了应用潜力。上述方法强调了情感在技术稳健性与以人为本的AI发展之间所起的关键桥梁作用,为打造既智能又具备共情能力的系统铺平了道路。
6.3 通过AI理解人类情感
文本方法:近期研究表明,LLMs具备对潜在情绪和情感进行细致推理的能力。通过逐步提示策略(如链式思维推理),研究人员使LLM即便在缺乏显性线索的情况下也能推断情绪[436]。在单轮推理之外,基于协商的框架通过多个LLM交叉评估彼此的输出,进一步细化情感判断,有效模拟更具深度的人类推理过程[437]。这些技术强调了迭代式、具上下文意识的策略在纯文本输入中捕捉微妙情感信号的重要性。
多模态方法:LLM 也被扩展以融合音频、视频和图像信号。最新研究展示了如何将额外的上下文或世界知识与视觉和文本信息融合,以捕捉更深层次的情感状态[442]。此外,一些框架将语音信号转换为文本提示,说明声音细节可以嵌入到LLM推理中而无需更改模型架构[443]。这种多模态集成结合可解释方法,使情感内容的表达更丰富、更透明[444]。
专用框架:除通用技术外,一些专门系统聚焦于需要更高模糊感知、上下文敏感性和生成适应能力的情绪识别任务[439][445]。这些方法强调人类情绪的复杂性,将其视为动态且概率性的,而非严格分类的。借助灵活的LLM指令范式,这些方法更好地解释模糊的情绪表达并融合上下文线索(如对话历史),推动LLM向更具人类风格的情绪理解迈进。
评估与基准:为全面评估LLM的情感智能,研究人员提出了多种基准测试套件。一些关注跨模态和社会情境下的通用情绪识别能力[446][447],另一些则比较不同规模模型的性能与效率[448]。还有针对多语言能力[449]、注释质量[450]或共情对话系统[451]的专项基准。进一步地,EMOBENCH[441]和 MEMO-Bench[452]测试文本与图像中对复杂情绪的理解与表达能力,而 MERBench[453]及更大规模评估[454]则聚焦多模态情绪识别中的标准化问题。这些基准测试共同揭示了LLM在理解人类情绪方面虽有显著进展,但仍存在诸多挑战,如隐性情绪检测、文化适应性及情境共情能力等[455]。
6.4 分析AI的情感和个性
LLM人格量表的可靠性:大型语言模型(LLM)在接受以人为中心的人格测试时表现出相互矛盾的证据。一方面,一些研究质疑常用量表的有效性,指出其存在如“同意偏差”和因子结构不一致等问题,从而引发对这些工具是否能够真正捕捉人格特质的怀疑[456, 457]。另一方面,系统性实验显示,LLM能够表现出稳定且类人化的人格特征模式,甚至能在特定提示下适配不同角色[458, 459]。尽管如此,对于行为一致性、自我知识的对齐,以及角色扮演智能体是否真正保持对分配角色的忠诚性等方面,仍存在诸多担忧[460, 461]。
心理测量方法与认知建模方法:近期研究应用严格的心理测量测试、认知任务和基于群体的分析方法,揭示LLM如何处理与表征心理构念[462, 463, 464]。在人类行为数据上微调可以使模型与个体认知决策模式保持一致,而基于群体的抽样技术则揭示了模型神经响应的变异性[465, 466]。通过将心理学理论与高级提示工程及嵌入方法结合,研究者得以揭示LLM对如焦虑、冒险倾向等潜在构念的表征方式,表明LLM在多个任务中可模拟人类推理方式。
情绪建模:关于LLM情绪智能的研究表明,这些模型具有显著的情绪理解能力,能解释细微的情感差异并预测带有情绪倾向的结果,其表现常常超过人类平均水平[423, 429]。然而,这些模型并不一定真正模拟人类的情绪处理过程,它们依赖于高维度的模式匹配,这种机制在面对情境变化、负面输入或冲突线索时可能失效[467, 468]。尽管如此,在规模更大的模型中,仍有可能出现分层情绪结构、应对策略以及类似同理心的行为,这一现象既展示了情绪对齐的潜力,也突显了在构建具有情感智能体能力的AI系统时所面临的伦理挑战。
6.5 操控AI情绪反应
基于提示的方法(Prompt-based Methods):最新研究表明,通过精心设计的提示语采用特定角色或人格设定,可以影响LLM的认知过程,从而实现有针对性的情绪或人格表达[469, 470, 471, 472]。例如,通过插入“如果你是一个[某角色]”这样的指令,LLM不仅会调整其语言风格,还会改变其潜在的情绪立场。这种方法在实时操控中非常有效,但在不同任务或模型变体之间可能表现不一致,因此仍需更系统的方法支持。
基于训练的方法(Training-based Methods):微调和参数高效的策略为诱导或调整LLM情绪提供了更深入且稳定的方式[473, 428, 474]。例如,量化低秩适配(QLoRA)和专门的数据集可以将诸如“大五人格”或MBTI等复杂特质直接嵌入模型的学习权重中。这些方法使得LLM能够自发地展现出特定人格特征的行为(包括表情符号的使用),并在较长的对话中维持其情绪状态,同时通过神经元级别的激活模式提供可解释性。
基于神经元的方法(Neuron-based Methods):最新的进展在于识别并直接操控与人格特质相关的神经元,从而激发或抑制特定的情绪特征[475]。通过在心理学基准测试(如PersonalityBench)中定位的神经元激活进行切换,无需重新训练整个模型,就能使LLM表现出特定的情绪维度。这种以神经元为中心的方法实现了对模型行为的精细、动态控制,是LLM情绪操控技术在精准度和效率方面的重要突破。
6.6 总结和讨论
操控与隐私问题:情绪人工智能在广告和政治领域的迅速应用引发了严重的操控和隐私风险[476, 477]。情绪AI常通过收集敏感的生物特征数据(如面部表情和语音语调)来推测情绪状态,从而用于定向广告或政治影响。然而,这些系统可能利用人类情绪牟利或谋取政治利益,侵犯基本权利,并加剧公共空间中的过度监控[478, 477]。欧盟《通用数据保护条例》(GDPR)和《人工智能法案》等监管框架对于负责任地缓解这些风险至关重要。
对齐问题:情绪AI对情绪的识别与解释往往与预期结果不符,可能导致不准确和偏见。例如,焦虑诱导型提示已被证明会加剧大语言模型(LLM)中的偏见,进而影响医疗、教育等高风险领域的输出[479, 480]。在职场应用中,AI系统对情绪线索的误判可能加剧歧视与权力不平等[481]。人类反馈强化学习(RLHF)等技术已被证明可缓解这些问题,但仍需进一步发展以确保在不同环境中的稳健对齐[479, 423]。
伦理影响:AI系统的信任与接受度在很大程度上取决于其表现出的同理心和社会适应行为[482, 483]。然而,将情绪商品化以应用于职场管理与客户服务,引发了关于伦理劳动实践和AI人际关系的担忧[481]。此外,情绪AI依赖拟人化特征但缺乏真实同理心,可能会削弱用户信任[482]。如SafeguardGPT等框架结合心理治疗技术,展现了提升信任与行为对齐的潜力[484]。尽管如此,在确保隐私、公平性和文化敏感性方面仍面临诸多挑战[484, 483]。
区分AI情绪模拟与人类情绪体验:尽管LLM智能体的情绪建模取得了进展,但一个根本区别仍然存在:这些系统并不真正“感受”情绪,而只是通过概率建模展现出类似人类情绪的模式。虽然LLM可以模拟情绪反应、识别情绪模式并生成情感性输出,但它们缺乏定义人类情绪的身体化、现象学体验。这种模拟与现实的差距带来了技术和伦理双重挑战。用户常常会将表现出情绪行为的AI系统拟人化[482],这可能导致错误的信任或期望。因此,无论在研究还是部署中,都需慎重考虑这种区别,因为LLM的情绪能力感知会影响人机关系、伦理框架及监管策略。未来研究应在增强LLM情绪智能的同时,保持其非有感知系统的透明本质。
【往期回顾】