Bellman-Ford算法

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

·        数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;

·         
以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] =Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

·        为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

首先介绍一下松弛计算。如下图:



 

松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况


 

则不会修改点B的值,因为3+4>6。
 
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则应为无法收敛而导致不能求出最短路径。
考虑如下的图:
 



经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
 
 

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。
 
在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
 


此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。
 
所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。

poj3259

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 10010;
const int INF = 999999;
struct  Edge
{
    int u;
    int v;
    int t;
} ;
Edge edge[N];
int num;
int n,m,w;
int dis[N] ;
bool Bellman_ford()
{
    for(int i = 1; i <= n; i ++)
    {
        dis[i] = INF;
    }
    bool flag ;
    for(int i = 1; i < n; i++)
    {
        flag = false;
        for(int j = 1; j <= num; j++)
        {
            if(dis[edge[j].v] > dis[edge[j].u] + edge[j].t)
            {
                dis[ edge[j].v ] = dis[edge[j].u] + edge[j].t;
                flag = true;
            }
        }
        if( !flag )
            break;
    }
    for(int j = 1; j <= num; j++)
        if(dis[ edge[j].v ] > dis[edge[j].u] + edge[j].t)
            return true;
    return false;

}
int main()
{
    int F,a,b,c;

    int tt;
    cin >> F;

    while(F--)
    {
        cin >> n >> m >> w;
        num = 0;
        memset(edge,0,sizeof(edge));
        for(int i = 1; i <= m; i++)
        {
            cin >>a >> b >>c;
            num ++;       //无向图
            edge[num].t = c; 
            edge[num].u = a;
            edge[num].v = b;
            num ++;
            edge[num].t = c;
            edge[num].u = b;
            edge[num].v = a;

        }
        for(int i = 1; i <= w; i++)
        {
            cin >> a  >> b >> tt;
            edge[++num].t = -tt;
            edge[num].u = a;
            edge[num].v = b;
        }
        if( Bellman_ford() )
            cout << "YES\n";
        else
            cout << "NO"<<endl;
    }
    return 0;
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值