斯坦福CS231n作业代码(汉化)Assignment 1 - Q2

这篇博客详细介绍了斯坦福大学CS231n课程作业中关于多类支持向量机(SVM)的实现过程。内容包括使用Python环境配置、CIFAR-10数据集的加载与预处理、线性SVM分类器的构建、损失函数的向量化实现、梯度验证、随机梯度下降法优化、超参数调整以及权重可视化。博主通过完成作业实践,探讨了SVM在10类图像分类问题上的应用,并分享了对SVM权重的理解。
摘要由CSDN通过智能技术生成

assignment1 -Q2 Multiclass Support Vector Machine

编写:郭承坤 观自在降魔 Fanli SlyneD
校对:毛丽
总校对与审核:寒小阳

代码环境:python3.6.1(anaconda4.4.0) && ubuntu16.04 测试通过

任务

  • 完成一个基于SVM的全向量化损失函数
  • 完成解析梯度的全向量化表示
  • 用数值梯度来验证你的实现
  • 使用一个验证集去调优学习率和正则化强度
  • 运用随机梯度下降优化损失函数
  • 可视化最后的学习得到的权重

线性SVM分类器

可以简单地认为,线性分类器给样本分类,每一个可能类一个分数,正确的分类分数,应该比错误的分类分数大.为了使分类器在分类未知样本的时候,鲁棒性更好一点,我们希望正确分类的分数比错误分类分数大得多一点.所以我们设置一个阈值 Δ Δ ,让正确分类的分数至少比错误分数大 Δ Δ ,这是我们期望的安全距离。这就得到了hinge损失函数.

Li=jyimax(0,SjSyi+Δ)(1) (1) L i = ∑ j ≠ y i m a x ( 0 , S j − S y i + Δ )
其中, Li L i 表示第i个样本的loss函数. Syi S y i 表示第i个样本正确分类的标签的分数,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值