人工智能
Trust-Bo
Trusted Computing TEE 可信计算 移动安全 TrustZone TCM TPM
展开
-
人脸识别终端的安全风险
人脸识别终端指以ATM、POS机、多功能柜台机和移动终端为主的人脸识别功能应用的前端设备,这些设备集成或外置有人脸采集模组、人脸识别相关的算法或SDK以及其本身原有的业务逻辑功能。人脸识别终端关于人脸识别功能的安全风险包含两方面,一个是人脸识别算法软件(或SDK)的运行环境安全风险,另一个是与人脸采集模组的通信安全风险,以下对其进行分类讨论。1 终端运行环境安全风险多数情况下,人脸识别终端运行着人脸识别算法SDK和对应的应用程序,算法SDK可以包含人脸图像的计算处理、临时存储、活体验证、识别对比和加原创 2020-11-27 14:36:46 · 1248 阅读 · 2 评论 -
人脸采集模组的安全风险
人脸采集模组主要指图像采集与活体检测功能模块,主要以摄像头形式存在。人脸采集模组的安全风险包含两方面,一个是模组是否带活体检测技术,另一个是模组本身的设计与实现安全风险,以下对其进行分类讨论。1 未含活体检测功能的人脸采集模组风险在一些非高安全的金融应用场景中,人脸采集方式仍使用普通单目摄像头,不具备活体检测功能,这些场景包括VIP精准识别与营销、有人值守的银行柜台业务和移动终端金融类APP身份识别等。对于不带人脸检测功能的采集设备,整个设备无法识别采集到的图像是否来源于一个真实的活人,则理论上原创 2020-11-27 13:59:26 · 1084 阅读 · 2 评论 -
人脸识别算法的安全风险
人脸识别算法分为传统算法和基于深度学习算法,传统算法多采用手动提取特征、训练分类器的方式如基于几何特征、特征脸等;深度学习人脸识别算法通过大量人脸图像数据训练网络模型,模型自动提取最适合于计算机理解和区分的人脸特征,进而自主识别人脸。虽然人脸识别算法准确率不断提升,但是将其应用于金融领域还存在一定安全风险,在人脸识别算法准确率、人脸检测、活体检测等方面性能差异产生一定安全问题。1 人脸识别算法准确率差异大不同人脸识别算法人脸特征选取差异大,对人脸识别准确率有较大影响,尤其传统识别算法多采用手工提取特原创 2020-11-27 13:53:01 · 1880 阅读 · 0 评论 -
人工智能金融应用场景
人工智能技术以其强大的数据处理能力以及自我学习能力使其应用在金融领域的各个环节中。与传统人工处理业务相比较,人工智能在金融领域中的应用有诸多独特优势。首先,计算机的数据计算能力为数据的处理提供了极大的优势,这一点在数据量十分巨大的金融领域来说是极其重要的。另外人工智能拥有人类大脑的某些功能效果,能够对数据进行及时响应并预警。金融领域数据复杂多变、易受外部环境影响,数据为各种政策的制定实施提供了强有力的理论支持,时时掌握最新的金融数据,把握经济动态走向显得尤为重要。人工智能在金融领域的重要特点,...原创 2020-11-24 17:19:21 · 1385 阅读 · 0 评论 -
人工智能相关概念及金融相关应用概念
人工智能相关概念及金融相关应用概念 人工智能(Artificial Intelligence, AI),是研究、开发用于模拟、延伸和扩展人类智能的理论、方法及应用系统的一门科学技术,其利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统,本质是对人类思维过程的模拟。从1956年约翰·麦卡锡在达特茅斯会议上第一次正式提出人工智能,经过半个多世纪的发展,人工智能技术不断完善并应用于越来越多的行业,其关键技术如图1所...原创 2020-08-07 16:12:19 · 939 阅读 · 0 评论