- 博客(6)
- 收藏
- 关注
原创 机器人基础之动力学
机器人基础之动力学Newton-Euler动力学方法外推计算速度和加速度内推计算力和力矩MATLAB实现Newton-Euler动力学方法Newton-Euler动力学方法是研究机器人动力学问题的一种重要方法。如果一直机器人关节的位置、速度和加速度以及机器人的运动学和质量分布信息,可以采用Newton-Euler动力学求出关节需要提供的驱动力和驱动力矩。Newton-Euler动力学方法主要包括速度和加速度的递推计算以及力和力矩的递推计算两个步骤。外推计算速度和加速度从连杆1到连杆n递推计算各连
2020-08-08 19:30:56 1441
原创 机器人基础之运动学
机器人基础之运动学旋转关节的连杆运动的传递角速度传递关系理论公式MATLAB实现线速度传递关系理论公式MATLAB实现角加速度传递关系理论公式MATLAB实现线加速度传递关系理论公式MATLAB实现算例旋转关节的连杆运动的传递角速度传递关系理论公式i+1ωi+1=ii+1Riωi+θ˙i+1i+1Zi+1{^{i+1}}\omega_{i+1} = {^{i+1}_i}R{^i}\omega_i+\dot\theta_{i+1}{^{i+1}}Z_{i+1}i+1ωi+1=ii+1Riωi+θ
2020-08-08 16:45:37 795
原创 机器人基础之雅克比矩阵
机器人基础之雅克比矩阵概述雅克比矩阵的构造微分运动和广义速度微分变换法MATLAB实现概述雅克比矩阵J(q)J(q)J(q)是从关节空间向操作空间的速度传递的线性关系,借助于机械原理中的概念,可以理解为广义传动比。对于nnn个关节的机器人,其雅克比矩阵是6×n6\times n6×n阶矩阵。其中前3行代表机器人末端坐标系线速度vvv的传递比;后3行代表对手爪的角速度ω\omegaω的传递比。另一方面,每一列代表相应的关节速度对末端坐标系线速度和角速度的传递比。因此,可将雅克比矩阵分块,即[vω]=[J
2020-08-07 21:27:59 8134 1
原创 机器人基础之运动学逆解
机器人基础之运动学逆解概述求解腕点位置求解腕部方位*z-y-z*欧拉角具体求解算例MATLAB实现概述运动学逆解是指已知机器人末端位姿,求解各运动关节的位置,它是机器人运动规划和轨迹控制的基础。以机械臂为例,其运动学逆解的求法主要有两类:数值解和解析解。数值解法只能求出方程的特解,不能求出所有的解。它的优点是计算简单,不需要进行矩阵操作;缺点是由于使用了迭代法(如牛顿迭代),实时性较差。这里主要介绍解析解法。研究发现,如果串联机械臂在结构上满足下面两个充分条件中的一个,就会有解析解。这两个充分条
2020-08-06 23:11:09 20459 12
原创 机器人基础之DH建模
机器人基础之DH建模齐次变换矩阵用MATLAB实现上述矩阵DH建模MATLAB实现DH建模算例齐次变换矩阵绕X轴旋转θ\thetaθ角度的齐次变换矩阵为: [10000cosθ−sinθ00sinθcosθ00001](n) \left[ \begin{matrix} 1 & 0 & 0 & 0\\ 0 & \cos\theta & -\sin\theta & 0\\ 0 & \sin\theta &
2020-08-05 22:26:06 3068
原创 机器人基础之姿态矩阵
机器人基础之姿态矩阵概述绕单个坐标轴旋转某一角度的旋转矩阵用MATLAB实现上述矩阵概述机器人学中使用姿态矩阵来描述坐标系之间的角度关系。通常坐标系固连在刚体上,因此姿态矩阵也可以用来描述刚体之间的角度关系。绕单个坐标轴旋转某一角度的旋转矩阵绕X轴旋转θ\thetaθ角度的旋转矩阵为: [1000cosθ−sinθ0sinθcosθ](n) \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \cos\theta &am
2020-08-05 21:25:25 6467
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人