给你一个 n x n 的二进制网格 grid,每一次操作中,你可以选择网格的 相邻两行 进行交换。
一个符合要求的网格需要满足主对角线以上的格子全部都是 0 。
请你返回使网格满足要求的最少操作次数,如果无法使网格符合要求,请你返回 -1 。
主对角线指的是从 (1, 1) 到 (n, n) 的这些格子。
思路:先把格子压缩到一维数组(arr[i]表示第i行最右边连续0的个数),然后模拟即可
class Solution {
public:
int arr[201] = {0};
int ans = 0;
bool dp(int start, int idx, int n){
for(int i = start; i<n; i++){
if(arr[i] >= idx){
if(!i) return true;
for(int j = i-1; j >=start; j--){
swap(arr[j], arr[j+1]);
ans++;
}
return true;
}
}
return false;
}
int minSwaps(vector<vector<int>>& grid) {
int n = grid.size();
memset(arr, 0, sizeof(arr));
for(int i = 0; i<n; i++){
for(int j = n - 1; j>=0; j--){
if(grid.at(i).at(j)) break;
arr[i]++;
}
}
for(int i =n-1; i>=0; i--){
if(!dp(n-i-1, i, n)) return -1;
}
return ans;
}
};