跳台阶问题分析整理

一、变态跳台阶


题目描述


一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。




关于本题,前提是可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
分析如下:
当target<=0,异常输入 直接return 0;
当target>=1,正常target输入:
f(0) = 1    表示从台阶底一次跳到第n级台阶
f(1) = 1
f(2) = f(2-1) + f(2-2) = f(1) + f(0)    //f(2-2) 表示2阶一次跳2阶的。
f(3) = f(3-1) + f(3-2) + f(3-3) = f(2) + f(1) + f(0)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 
     = f(n-1) + f(n-2) + f(n-3) + ... + f(1) + f(0) 
具体说明: 
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
    那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
    因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)    
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
    可以得出:
    f(n) = 2*f(n-1)
    
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
              | 1       ,(n=0 ) 
f(n) =        | 1       ,(n=1 )
              | 2*f(n-1),(n>=2)


public class Solution {
    public int JumpFloorII(int target) {
        if(target <= 0) return 0;       
        else{
            int[] jump = new int[target + 1];            
            jump[1] = 1;                 
            for(int i = 2 ; i <= target ; i++){               
                jump[i] = 2 * jump[i - 1];
            }
            return jump[target];
        }
    }
}


前面是用常规的动态规划分析解题思路,当然了,还有一种针对本题的简便的解题思路:每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳,所以共有2的(n-1)次方中情况。

二、普通跳台阶



题目描述


一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
public class Solution {
    public int JumpFloor(int target) {
        if(target == 0) return 0;
        else if(target == 1) return 1;
        else if(target == 2) return 2;
        else{
           int[] jump = new int[target];
           jump[0] = 1;
           jump[1] = 2;
           for(int i = 2 ; i < target ; i++){
               jump[i] = jump[i - 1] + jump[i - 2];
           }
            return jump[target - 1];  
        }      
    }

}




















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值