一、变态跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
关于本题,前提是可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
分析如下:
当target<=0,异常输入 直接return 0;
当target>=1,正常target输入:
f(0) = 1 表示从台阶底一次跳到第n级台阶
f(1) = 1
f(2) = f(2-1) + f(2-2) = f(1) + f(0) //f(2-2) 表示2阶一次跳2阶的。
f(3) = f(3-1) + f(3-2) + f(3-3) = f(2) + f(1) + f(0)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
= f(n-1) + f(n-2) + f(n-3) + ... + f(1) + f(0)
具体说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
| 2*f(n-1),(n>=2)
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0) return 0;
else{
int[] jump = new int[target + 1];
jump[1] = 1;
for(int i = 2 ; i <= target ; i++){
jump[i] = 2 * jump[i - 1];
}
return jump[target];
}
}
}
前面是用常规的动态规划分析解题思路,当然了,还有一种针对本题的简便的解题思路:每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳,所以共有2的(n-1)次方中情况。
二、普通跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
public class Solution {
public int JumpFloor(int target) {
if(target == 0) return 0;
else if(target == 1) return 1;
else if(target == 2) return 2;
else{
int[] jump = new int[target];
jump[0] = 1;
jump[1] = 2;
for(int i = 2 ; i < target ; i++){
jump[i] = jump[i - 1] + jump[i - 2];
}
return jump[target - 1];
}
}
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
关于本题,前提是可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
分析如下:
当target<=0,异常输入 直接return 0;
当target>=1,正常target输入:
f(0) = 1 表示从台阶底一次跳到第n级台阶
f(1) = 1
f(2) = f(2-1) + f(2-2) = f(1) + f(0) //f(2-2) 表示2阶一次跳2阶的。
f(3) = f(3-1) + f(3-2) + f(3-3) = f(2) + f(1) + f(0)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
= f(n-1) + f(n-2) + f(n-3) + ... + f(1) + f(0)
具体说明:
1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。
2)n = 1时,只有1种跳法,f(1) = 1
3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)
因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:
f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)
6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
| 2*f(n-1),(n>=2)
public class Solution {
public int JumpFloorII(int target) {
if(target <= 0) return 0;
else{
int[] jump = new int[target + 1];
jump[1] = 1;
for(int i = 2 ; i <= target ; i++){
jump[i] = 2 * jump[i - 1];
}
return jump[target];
}
}
}
前面是用常规的动态规划分析解题思路,当然了,还有一种针对本题的简便的解题思路:每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳,所以共有2的(n-1)次方中情况。
二、普通跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
public class Solution {
public int JumpFloor(int target) {
if(target == 0) return 0;
else if(target == 1) return 1;
else if(target == 2) return 2;
else{
int[] jump = new int[target];
jump[0] = 1;
jump[1] = 2;
for(int i = 2 ; i < target ; i++){
jump[i] = jump[i - 1] + jump[i - 2];
}
return jump[target - 1];
}
}
}