转载请注明出处,谢谢http://blog.csdn.net/bigtiao097?viewmode=contents
题意:
求f
(n)mod109+7,其中(1≤n≤106)
f(n)=∑i=1n∑j=1i⌈ij⌉[(i,j)=1]
where [(i,j)=1] evaluates to be 1 if gcd(i,j)=1 , otherwise 0.
思路:
设
f(n)=∑i=1n⌈ni⌉[(n,i)=1]
g(n)=∑i=1n⌈ni⌉
打表找规律能得到
g(n)=∑d|nf(d)
这个式子当时同学打表找规律得到的,等证明出来再来更新
然后由莫比乌斯反演我们可以得到
f(n)=∑d|nμ(nd)g(d)
现在问题转化成了怎么求 g(n)
一种方法就是分段优化,对于每个n可以 O(n√) 求出来,这样总体的复杂度就是 O(nn√) ,显然会超时。。。
下面介绍怎么正确求 g(n) :
递推法
g(n)=1+g(n−1)+τ(n−1)
关于这个递推式可以看一下 这里
τ(x) 表示x的因子个数
τ(x) 这个函数可以 O(nlogn) 求出,这个和求因子和的过程差不多,具体可以看代码
然后就可以 O(n) 的求 g(n) ,
然后就能 O(nlogn) 的求出 f(n) 了,这样就结束了
注:下面代码中的f(n)与g(n)正好与上面思路中相反
具体代码如下:
Result:Accepted
Memory: 30392K
Time : 374MS
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6+5;
const int mod = 1e9+7;
ll sigma[maxn];
ll f[maxn];
ll g[maxn];
ll tau[maxn];
ll n,ans,cur;
bool vis[maxn];
int prime[maxn];
int mu[maxn];
int tot;
void mobius()
{
memset(vis,0,sizeof vis);
mu[1] = 1;
tot = 0;
for(int i=2;i<maxn;i++)
{
if( !vis[i] ){
prime[tot++] = i;
mu[i] = -1;
}
for(int j = 0; j < tot; j++)
{
if(i * prime[j] >=maxn) break;
vis[i * prime[j]] = true;
if( i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else
mu[i * prime[j]] = -mu[i];
}
}
}
void init()
{
mobius();
for(int i=1;i<maxn;i++)
for(int j=i;j<maxn;j+=i)
tau[j]++;
f[1] = 1;
for(int i=2;i<maxn;i++)
f[i] = 1+f[i-1]+tau[i-1];
for(int i=1;i<maxn;i++)
for(int j=i;j<maxn;j+=i)
g[j] = (g[j]+mu[j/i]*f[i]%mod+mod)%mod;
for(int i=2;i<maxn;i++)
g[i] = (g[i-1]+g[i])%mod;
}
int main()
{
init();
while(~scanf("%lld",&n))
printf("%lld\n",g[n]);
}