InfluxDB 3.0 GA:四年Rust重构,是新生还是挑战?

大家好,我是Tony Bai。

今天晚上和大家聊一个时序数据库领域的大事:InfluxDB 创始人 Paul Dix 在 X 上正式宣布,历时四年多开发的 InfluxDB 3.0 核心版与企业版 GA (General Availability) 了。


官方的亮点包括:“无盘”架构(基于对象存储)、新增 SQL 引擎(补充 InfluxQL)、无限基数支持、Python 处理引擎等,目标是将其打造成一个集数据收集、监控、ETL、告警等于一体的平台。

这无疑是一个重要的里程碑,凝聚了团队巨大的投入。然而,从我个人的观察和了解来看,这个拥抱 Rust、历时四年的重构之路,似乎也带来了一些值得我们关注和思考的现象:

  1. Go 社区的“疏离感”? InfluxDB 最初以 Go 实现赢得了大量 Gopher 的喜爱和广泛应用。长达四年的 Rust 重写,意味着其技术底座发生了根本变化。我注意到,不少原本 InfluxDB 的忠实用户,特别是 Go 技术栈的开发者,在这漫长的等待和技术栈切换中,可能已经将目光投向或 迁移到了其他选择,比如近年来同样基于 Go 开发且表现抢眼的 VictoriaMetrics。 技术栈的亲和度和生态的连续性,对开发者选型的影响不容忽视。

  2. 性能的疑云? 技术重构往往伴随着性能提升的期待。但有意思的是,国内的竞争对手 TDengine 近期针对 InfluxDB 3.0 发布了两次 Benchmark 对比测试。报告显示(虽然我们需要辩证看待第三方 Benchmark),在不少关键指标上,新发布的 3.0 版本甚至未能超越其经典的 Go 版本 InfluxDB 1.8。 这无疑给 3.0 的实际落地表现带来了一些疑问。


我的思考:

一项技术的重大革新,带来了新特性,但也可能改变了其原有的核心优势(如特定技术社区的亲和度)或在某些方面带来新的挑战(如短期内的性能 表现)。InfluxDB 3.0 的案例,生动地展示了技术选型、重构决策背后复杂的权衡,以及对用户社区可能产生的深远影响。

想听听大家的看法:

  • 你如何看待 InfluxDB 3.0 这次基于 Rust 的重大版本发布?

  • 在你的时序数据库选型中,技术栈(如 Go vs Rust)、社区生态、性能表现、运维成本等因素,你更看重哪些?

  • 你或者你所在的团队,目前在用哪款时序数据库?有什么实践经验或踩坑经历可以分享吗?

欢迎在评论区留下你的观点和经验,我们一起交流探讨!

如果你对这类深度的业界观察和思考感兴趣,希望看到更多我对技术趋势、行业动态的及时点评和个人观点,欢迎加入我的知识星球「Go & AI 精进营」。

我在星球里开设了一个专属栏目——【TonyBai说】,会更高频、更即时地分享这类独家内容。在这里,你不仅能第一时间获取信息,更能直接参与讨论,与我和其他星友深度交流、碰撞思想。

扫描下方二维码,加入星球,直达【TonyBai说】,不错过每一次深度思考! 👇👇👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值