【读书笔记->统计学】05-01 “概率”的整体影响-期望、方差、标准差概念简介

“概率”的整体影响

老虎机的“秘密”

书中以老虎机为情境来介绍知识。所以我们可以先看看什么是老虎机。

在这里插入图片描述

一个简化版的老虎机就是上图的样子,我们可以用1美元的成本拉一次杆,随后三个窗口会滚动,每种符号出现的概率如上图所示。如果碰到以下几种情况,就会获得硬币。

在这里插入图片描述

我们看看每种中奖的概率是多少:

在这里插入图片描述

组合柠檬樱桃美元/樱桃美元
概率0.9770.0080.0080.0060.001

从上面我们已经求出了每种赢钱组合的概率,不过我们可以更进一步,求得我们可能的赚钱数额。赚钱(或赔付)金额=奖金-玩一局的本金(1美元)

组合柠檬樱桃美元/樱桃美元
收益-$1$4$9$14$19
概率0.9770.0080.0080.0060.001

表格给出了赢局的概率分布—即老虎机每一种可能收益(或赔付)所对应的概率的集合。

在推算老虎机概率时,你计算了每个赢局(或赔局)的概率,即,你计算了一个随机变量的概率分布。随机变量是一个可以等于一系列数值的变量,而这一系列数值中的每一个值都与一个特定概率相关联。在老虎机这个例子中,随机变量代表我们将在每一局赌局中赢得的收益

随机变量通常用大写字母表示,如X或Y;变量能够采用的特定数值则用小写字母表示,如x或y。于是,P(X=x)则表示“变量X取特定数值x的概率”。

以下是用上述表示法表示的老虎机的概率分布(可以和上面的表对照一下):

组合柠檬樱桃美元/樱桃美元
x-1491419
P(X=x)0.9770.0080.0080.0060.001

这里的变量具有离散性,即该变量只能取确定数值。

除了拟定概率分布表,我们还可以用图形来表示概率分布。下面是一张条形图,用于表示老虎机的概率。

在这里插入图片描述

只要求出概率分布,就可以利用概率分布确定预期结果。

在老虎机这个例子中,我们可以利用概率分布确定你的长期期望收益(或亏损)。

期望

为了算出这个期望数额,可以先算出在典型情况下可以期望每一局赢多少钱或赔多少,即可以求出统计学上的所谓期望。

变量X的期望和均值有点儿像,甚至连计算方法也相似(个人认为:期望中的“概率” 与 均值中的“频数/总数” 很相似),但它描述的是概率分布。为了求出期望,可将每个数值x乘以该数值的发生概率,然后将所有乘积求和

变量X的期望通常写作E(X),当有时候也会写作 μ \mu μ,也就是均值的符号。我们这样打比方吧:期望和均值是一对双胞胎,但一出生就由不同人家领养了。

下面是E(X)的计算式:
E ( X ) = μ = ∑ x P ( X = x ) E(X) = \mu = \sum xP(X=x) E(X)=μ=xP(X=x)
利用老虎机概率分布,求老虎机的收益期望:

x-1491419
P(X=x)0.9770.0080.0080.0060.001

E ( X ) = ( − 1 ∗ 0.977 ) + ( 4 ∗ 0.008 ) + ( 9 ∗ 0.008 ) + ( 14 ∗ 0.006 ) + ( 19 ∗ 0.001 ) = − 0.77 E(X) = (-1*0.977)+(4*0.008)+(9*0.008)+(14*0.006)+(19*0.001) \\ = -0.77 E(X)=(10.977)+(40.008)+(90.008)+(140.006)+(190.001)=0.77

换句话说,在多次拉杆之后,你能够期望每一局赔掉0.77美元,也就是说,如果玩100次老虎机,你能够期望赔掉77美元。

方差

期望指出每一局赌局能够期望得到的平均收益,如果每一次都赔这么多钱,那么赌博有何乐趣?谁又愿意赌博?

期望每一局都赔钱并不表示连一丁点儿赢大钱的希望都没有。和均值一样,期望并没有全面体现出每一局赌局有可能存在的收益变化。

在这里插入图片描述

期望指出一个变量的典型值或平均值,但并不提供有关数据分散性的任何信息。在老虎机赌博中,如能得到分散性信息,我们将能更多地了解潜在收益的变化情况。我们可以用“方差”来量度这种分散性。

在这里插入图片描述

与第3章的方差类似: 方 差 = ∑ ( x − μ ) 2 n 方差 = \frac{\sum(x-\mu)^2}{n} =n(xμ)2。变量X的方差,求的是 ( X − μ ) 2 (X-\mu)^2 (Xμ)2期望(很好理解, ∑ 各 个 的 频 数 n \frac{\sum各个的频数}{n} n与概率是一个意思)。计算公式如下:
V a r ( X ) = E ( X − μ ) 2 Var(X) = E(X-\mu)^2 Var(X)=E(Xμ)2
其中, μ = E ( X ) \mu=E(X) μ=E(X)

如何计算 E ( X − μ ) 2 E(X-\mu)^2 E(Xμ)2

E ( X − μ ) 2 E(X-\mu)^2 E(Xμ)2与求E(X)非常相似,只是将x改为 ( x − μ ) 2 (x-\mu)^2 (xμ)2
E ( X − μ ) 2 = ∑ ( x − μ ) 2 P ( X = x ) E(X-\mu)^2 = \sum(x-\mu)^2P(X=x) E(Xμ)2=(xμ)2P(X=x)

进一步, V a r ( X ) = E ( X 2 ) − μ 2 Var(X) = E(X^2) - \mu^2 Var(X)=E(X2)μ2,推导:
V a r ( X ) = ∑ ( x − μ ) 2 P ( X = x ) = ∑ ( x 2 − 2 x ∗ μ + μ 2 ) P ( X = x ) = ∑ x 2 P ( X = x ) + ∑ ( − 2 μ ∗ x ) P ( X = x ) + ∑ μ 2 P ( X = x ) = ∑ x 2 P ( X = x ) + ( − 2 μ ) ∑ x P ( X = x ) + μ 2 = E ( X 2 ) − 2 μ ∗ μ + μ 2 = E ( X 2 ) − μ 2 Var(X) = \sum(x-\mu)^2P(X=x) \\ = \sum (x^2-2x*\mu + \mu^2) P(X=x) \\ = \sum x^2 P(X=x) +\sum (-2\mu*x)P(X=x) + \sum\mu^2 P(X=x) \\ = \sum x^2 P(X=x) +(-2\mu)\sum xP(X=x) + \mu^2 \\ = E(X^2) -2\mu*\mu+\mu^2 \\ = E(X^2) - \mu^2 Var(X)=(xμ)2P(X=x)=(x22xμ+μ2)P(X=x)=x2P(X=x)+(2μx)P(X=x)+μ2P(X=x)=x2P(X=x)+(2μ)xP(X=x)+μ2=E(X2)2μμ+μ2=E(X2)μ2

老虎机的方差

V a r ( X ) = E ( x − μ ) 2 = ( − 1 + 0.77 ) 2 ∗ 0.977 + . . . + ( 19 + 0.77 ) 2 ∗ 0.001 = 2.6971 Var(X) = E(x-\mu)^2 \\ =(-1+0.77)^2*0.977 + ... + (19+0.77)^2*0.001 \\ =2.6971 Var(X)=E(xμ)2=(1+0.77)20.977+...+(19+0.77)20.001=2.6971

小知识:从技术上说,方差应该这么写: E ( ( X − μ ) 2 ) E((X-\mu)^2) E((Xμ)2),但通常不这么写

标准差

概率分布的标准差与数据集的标准差作用相似,是一种量度数据与数据中心的期望距离的方法。像以前一样,标准差的计算方法是取方差的平方根,如下所示:

σ = V a r ( X ) \sigma = \sqrt{Var(X)} σ=Var(X)

这就是说,老虎机收益的标准差是1.643,这表示从平均情况看来,我们每一局收益与期望收益(-0.77)之间的距离是1.642。

问:期望是不是应该等于X能够取用的某个数值?

答:不一定。就像一个数据集的均值不一定等于这个数据集中的某个数据,一个概率分布的期望也不一定等于X能够取用的一个数值。

问:这里的方差和标准差和我们以前研究过的数值的方差和标准差是一样的吗?

答:是一样的,不过这一次研究的是概率分布。数据集的方差和标准差是量度数据与均值的距离的方法,而概率分布的方差和标准差是量度一些特定数值的概率的分散情况的方法。

求解期望和方差的例题:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值