概率论的学习和整理7:期望和方差,回到随机实验本身去理解

目录

1 期望和均值(平均值)

1.1 期望的定义

1.2 期望怎么理解

1.2.1 数学期望是什么?

1.2.2 数学期望的理解

1.3 平均值(mean Value)是什么

2 随机试验 和数学期望

2.1 对随机试验的加深理解

2.1.1 数学期望是用来处理随机变量 这种不确定对象的!

2.2 期望的公式

2.2.1   普通一组数据的没有期望,只有均值,因为不是随机变量

2.2.2   统计数据的期望公式

2.2.3 随机变量的期望公式

2.3 数学期望E的一些性质推论

2.4  EXCEL的期望公式

3 方差

3.1 什么是方差

3.2 方差的原始基础公式1:已知数据的方差 / 抽样样本的方差

3.2.1 常见的方差定义:数据的方差

3.2.2 常见的方差定义:统计的方差

3.3  随机变量的方差基础公式,需要以P为权重(而不是1/n)

3.3.1 随机变量的方差公式,D(X) = Σpi* (X-E(X))^2 应该如下

3.3.2 随机变量的数学期望计算

3.3.3 勘误:

(各种可能的错误,都是因为对“随机变量的”期望和方差的理解不够导致)

3.4  方差公式3 : 方差与期望的关系式

4 EXCEL的方差公式

5  协方差


1 期望和均值(平均值)

1.1 期望的定义

期望的本质就是平均值

但是随机变量的期望,和普通平均值是有区别的

  • 期望,是一种特殊的加权平均值,权重就是每个变量对应的概率。
  • 随机变量的数学期望,不是简单的平均值,而是以概率为权重的加权平均值
  • 离散的随机变量的平均值公式 E(X)= Σpi*xi
  • 连续的随机变量的期望 E(X)= ∫ f(x)*dx
  • 特殊分布的随机变量的期望 
  1. 如几何分布,E(X)= 1/P
  2. 如二项分布,E(X)= n*p
  3. ...

1.2 期望怎么理解

1.2.1 数学期望是什么?

       数学期望不是日常语言里的:某一个“期望结果” ,而是随机变量的所有可能结果的加权(权重=概率)平均值,这个平均值可能不是 各个可能结果的之中的任何1个,只是一个计算值。

1.2.2 数学期望的理解

       数学期望,实际上可以看做是随机变量的一种加权平均值,用随机变量的所有可能取值 * 权重,而权重就是随机变量每个可能取值的概率。

       数学期望,比一般的加权平均值更有意义的地方,就是其权重= 概率P是有意义的。

  • 随机变量X,数学期望E=  随机变量X的加权平均值,权重=概率
  • 因此X ={x1,x2...xn}  (X是一个数组,数列)
  • 而E(X)= ∑ Xi*Pi  =X1*P1+X2*P2+ ..... Xn*Pn
  • 所以  数学期望是一种 X的加权平均,对X这个数组每个xi 的值,用概率pi 进行,数学期望是一个把 随机变量的每个可能值,对应概率,全部压缩为一个数的一个高信息数值指标。

1.3 平均值(mean Value)是什么

  • 前面已经些了详细的说明和比较,详见前文
  • 算术平均值
  • 几何平均值
  • 调和平均数
  • 平方平均值(均方根)
  • 加权平均值

2 随机试验 和数学期望

理解期望和方差还是要回到随机试验本身

2.1 对随机试验的加深理解

2.1.1 数学期望是用来处理随机变量 这种不确定对象的!

案例1:固定的数值序列/ 数组

  • 比如2个数字
  • 集合就是{0,1},集合内2个元素 ,数量确定
  • 平均值就是0.5,确定不变
  • 随机变量 x={0,1} 和 常数数组 {0,1} 是完全不同的2个概念

案例2:随机试验

  • 但是,如果有个随机试验,50%概率0,50%概率1,那么也是只有两种事件(比如是正方面)--对应的随机变量0,1。但是,因为是随机的,也就是,试验可以做无限次,每次的结果都会随机变化,样本空间里包含无限个0,1
  • 所以,样本空间也就是=集合=S= {0,1,1,1,0,1,0,1,1,0,0,1......} ,集合内无限个元素,但是因为要去重,实际上样本空间S={0,1} ,对应的随机变量 x={0,1}
  • 随机变量 x={0,1} 和 常数数组 {0,1} 是完全不同的2个概念
  • 虽然样本空间和随机变量的取值范围是{0,1},是确定的,但是进行n 次试验的平均值却不能确定,为什么呢?
  1. 因为试验次数不同,均值可能不同,
  2. 不同轮的试验,试验结果可能是完全不同的序列
  • 平均值不确定,因为试验次数不确定,可能有不同的S  {0,1,1,1} , {0,1,1,1,0,1,0,1,1,0}, 比如  {0,1,1,1}  平均值 0.75  ,{0,1,1,1,0,1,0,1,1,0}  平均值 0.6 .....  那平均值就没法求了?

  • 所以,数学期望就出现了
  • E(x)=0*50%+1*50%=0.5 ,那这个代表什么意思呢?就是当试验次数n 足够多,样本空间足够大,接近无限,那么 数学期望会趋近 0.5
  • 所以,数学期望,一般是针对随机变量的,而不是针对一个确定的 {0,1} 常数数组,数学期望只针对随机变量--背后是可以无限次试验--从而让概率接近真实概率p的随机试验!

  • 所以两者区分就很明显了
  • 样本数确定,可以直接求各种平均数,
  • 样本数量不确定(无限),如随机变量,只能求数学期望 (样本越大越准确)

2.2 期望的公式

2.2.1   普通一组数据的没有期望,只有均值,因为不是随机变量

  • 如果只是一组数据,可以直接求均值
  • 这组确定数据的 算术均值期望 Σxi/n       ( i=1,n)

2.2.2   统计数据的期望公式

  • 虽然统计一般是对随机变量进行统计和验证
  • 但是统计时一般把抽样时,设定为  平均概率
  • 所以统计的随机变量的期望 E(X)= Σxi/n       ( i=1,n)

2.2.3 随机变量的期望公式

  • 每个随机变量xi 对应发生的概率 pi
  • 所以随机变量的期望 E(X)= Σpi*xi    ( i=1,n)

2.3 数学期望E的一些性质推论

  • E(C) = C ,常数的期望= 本身,或者说 数学期望只针对随机变量,对常数无作用。
  • E(CX) = C *E(X)
  • E(X+Y) = E(X) + E(Y)
  • 如果X和Y互相独立, E(X*Y) = E(X)*E(Y)

2.4  EXCEL的期望公式

  • 直接用连乘公式可以解决
  • sumproduct(数列1,数列2)

EXCEL都有对应的公式

  • AVERAGE()
  • GEOMEAN()
  • HARMEAN()

3 方差

3.1 什么是方差

  • 方差就是衡量每个变量与 总体均值 之间的差异,但是因为每个变量与总体均值的差异都不一样,因此牛人们就发明了一个总量值。
  • 也就是把所有每个变量与 总体均值 之间的差异的平方值求和 = 方差。
  • 用这个来描述,总体每个值与均值差异的大小!

3.2 方差的原始基础公式1:已知数据的方差 / 抽样样本的方差

3.2.1 常见的方差定义:数据的方差

比如下面这种定义

  • 这种方差公式,并不适用于随机变量,只是适用于1个数列(有限的数列吧),这种情况下
  • 数列的均值,和方差可以综合反映数据的集中趋势,离散程度等
  • 公式里,方差的定义,带平方就是为了消除,有的数据比平均值大有的小,造成差值有正有负的影响。
  • 标准差也跟着去掉了这种影响

3.2.2 常见的方差定义:统计的方差

  • 因为即使是随机变量的方差
  • 再统计时,因为得到的只是少数样本,而这些样本是已知的,如果要计算这些已知样本的期望和方差,计算方差就和随机变量的不一样,一般假设为平均概率的,也就是
  • 统计的期望 E(X) =Σxi/n
  • 统计的期望
  • D(X) =((x1-u)^2+(x1-u)^2+...+(xn-u)^2)/n
  • D(X) =Σ(xi-u)^2/n

3.3  随机变量的方差基础公式,需要以P为权重(而不是1/n)

  • 方差:     D(X) = Σpi* (X-E(X))^2
  • 因为         E(X)=Σpi* xi  和 E(X^2)=Σpi* xi^2 
  • 方差:     D(X) =E(X−E(X)) ^2 =E(X^2)−E(X)^2= Σpi* xi^2 - (Σpi* xi )^2
  • 标准差: σ ( x ) = 开根号 D ( X )

(以概率为权重的) 加权平均公式

3.3.1 随机变量的方差公式,D(X) = Σpi* (X-E(X))^2 应该如下

  • 按加权平均值的算法思路,推导
  • S^2 =(X1-u)^2*P1+ (X2-u)^2*P1+ ...  +(Xn-u)^2*Pn /(P1+P2+...+Pn)
  • S^2 =(X1-u)^2*P1+ (X2-u)^2*P1+ ...  +(Xn-u)^2*Pn /1
  • S^2 =(X1-u)^2*P1+ (X2-u)^2*P1+ ...  +(Xn-u)^2*Pn 

3.3.2 随机变量的数学期望计算

  • step1 首先,要有一个完整的样本空间(包含所有样本点)
  • setp2 然后对样本点进行去重,归纳
  • setp3  ∑ 随机变量 *  对应概率 就可以计算数学期望了
  • 并且可以做,pmf / pdf  和 cdf

3.3.3 勘误:

(各种可能的错误,都是因为对“随机变量的”期望和方差的理解不够导致)

例题:样本空间有2个事件,A发生概率80%,B发生概率20%

  • 正确算法
  • (1-0.8)^2*0.8+(0-0.8)^2*0.2 /(0.8+0.2) = (1-0.8)^2*0.8+(0-0.8)^2*0.2
  • 为什么这个才是正确的
  • 因为 期望E,本身就是对随机变量x的各个取值 x1..xi的一种加权平均,所以,方差要检查的就是每个 xi 和E 之间的差距,再*概率

  • 错误算法
  • (1-0.8)^2*1+(0-0.8)^2*1 /2       ------乘1不对,而应该乘概率,/概率之和,这才是合适的权重
  • (0.8-0.5)^2*1+(0.2-0.5)^2 /2    ------这么算是 纯概率的方差,不涉及样本值本身,概率纯算术均值= (0.8+0.2)/2 =0.5 
  • (0.8-0.8)^2*1+(0.2-0.8)^2 /2    ------混乱错误,概率 - 期望值,无法计算

3.4  方差公式3 : 方差与期望的关系式

  • 方差和期望是存在关系的
  • D(x)=E(x^2)-[E(x)]^2
  • 样本矩,中心矩

推导过程

推导过程中,将E(x)视为常数即可。

D(X)=E{[X-E(x)]^2}/1

        =E{[X-E(x)]^2}
        =E{X^2-2XE(x)+[E(x)]^2}
        =E(x^2)-2E(x)*E(x)+[E(x)]^2
        =E(x^2)-E(x)^2

4 EXCEL的方差公式

  • 总体方差        VAR.P()
  • 样本方差        VAR.S()
  • 总体标准差    STDEV.P()
  • 样本标准差    STDEV.S()
  • 或者自己用方差的定义公式来算 (前提是,数据序列不太多。。。)
  • SUM((X1-u)^2+...+(Xn-u)^2)/10

5  协方差

  • 协方差,是用来衡量两个变量之间的关系
  • 当2个变量相同时,协方差 = 方差

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值