【读书笔记->统计学】07-01 离散型概率分布-几何分布概念简介

离散型概率分布

几何分布

一个情境:查德喜欢滑雪,但是技术并不好。从山顶滑至坡底,不出事故地概率是0.2(假设查德不会进步)。如果他打算不停尝试,直至大功告成。在取得第一次成功后,他将停止滑雪。

那么如果他试滑一次或两次就能成功滑至坡底的概率多大?

在这里插入图片描述

那如果他可以试无穷尽次,他会在第几次成功呢?我们可以推演一下(心中可以想像概率树,0.8是失败的情况):

在这里插入图片描述

这里的r是推演的数值,而x是概率分布中的任何值,两者不要混淆。

可以看到,查德第r次成功的概率是:
P ( X = r ) = 0. 8 r − 1 ∗ 0.2 P(X=r) = 0.8^{r-1}*0.2 P(X=r)=0.8r10.2
我们总结一下。如果用p代表单次试滑的成功概率,则失败的概率为1-p,我们将此概率称为q,于是可以用下式计算任何具有这一性质的概率:
P ( X = r ) = q r − 1 p P(X=r)=q^{r-1}p P(X=r)=qr1p
这个公式叫做概率的几何分布

几何分布包含以下条件:

  1. 进行一系列相互独立的试验。
  2. 每一次试验都既有成功的可能,也有失败的可能,且单次试验的成功概率相同。
  3. 你主要感兴趣的是,为了取得第一次成功需要进行多少次试验。

如果碰到求概率的情况满足以上条件,那么就可以用几何分布的公式帮助你速战速决。

提示:这里的“成功”表示的是我们感兴趣的事件成为事实。如果我们希望看到的事件含有负面含义,从统计学的角度看,这个负面事件仍然可算得是一个“成功”事件。

为了求出X取特定数值r的概率,可以用下式进行快速计算:
P ( X = r ) = p q r − 1 P(X=r)=pq^{r-1} P(X=r)=pqr1
其中p为成功概率,q=1-p为失败概率。即,为了在第r次试验时取得成功,首先要失败(r-1)次。

当r=1时,P(X=r)达到最大值,随着r增大,P(X=r)逐渐下降。意思是成功的概率在第一次试验时最大。

在这里插入图片描述

几何分布在不等式的情况

试验次数大于r,意味着前r次必须失败。
P ( X > r ) = q r P(X>r) = q^r P(X>r)=qr
那么,为了取得一次成功而需要尝试r次或r次以下概率:
∵ P ( X ≤ r ) + P ( X > r ) = 1 ∴ P ( X ≤ r ) = 1 − P ( X > r ) = 1 − q r \because P(X \leq r)+P(X>r) = 1 \\ \therefore P(X \leq r) = 1-P(X>r) = 1 - q^r P(Xr)+P(X>r)=1P(Xr)=1P(X>r)=1qr
如果一个变量X的概率符合几何分布,且单次试验的成功概率为p,则可以写作:
X ∼ G e o ( p ) X \sim Geo(p) XGeo(p)

几何分布的期望模式

前面已经求出查德为了成功滑至坡底而需要试滑的次数,但期望和方差呢?在数学期望已知的情况下,就可以得出查德在成功之前试滑次数的期望值。

期望的公式是 E ( X ) = ∑ x P ( X = x ) E(X)=\sum xP(X=x) E(X)=xP(X=x),在这个例子有无穷多个概率。不过,我们可以先算算前面几个数值,看看是否存在某种固定模式。

下面是x的前几个数值,其中X~Geo(0.2)

在这里插入图片描述

第3列是中间值,数值表示 x P ( X = x ) xP(X=x) xP(X=x)。但是在x=5的时候,数值最大。第4列是期望。当x大于5时,第3列-中间值开始越来越小。到后面几乎不能使期望发生变化。

下面是第4列( x P ( X ≤ x ) = ∑ x P ( X = x ) xP(X\leq x) = \sum xP(X=x) xP(Xx)=xP(X=x) = 期望)的图形:

在这里插入图片描述

将xP(X=x)的累计总和(期望)画成图形后,可以看出,随着x变大,期望越来越接近一个特定数值:5(我的理解:随着x越来越多,纵坐标越来越接近5)。经过无穷多次试验(很多的x【不是很“大”的x】)后,xP(X=x)的累计总计(也就是期望)正是等于5,即 E ( X ) = 5 E(X)=5 E(X)=5

上式的意义很直观:单次试验的成功概率为0.2,可以理解为5次尝试中有一次尝试趋向于成功,因此我们可以期望查德尝试5次即可获得成功。

以上情况可以推而广之至任意数值p。如果X~Geo§,则:
E ( X ) = 1 p E(X) = \frac{1}{p} E(X)=p1

几何分布的方差

前提: 方 差 = V a r ( X ) = E ( X 2 ) − E 2 ( X ) 方差=Var(X)=E(X^2)-E^2(X) =Var(X)=E(X2)E2(X)

看下表,第4列是 x 2 P ( X ≤ x ) = E ( X 2 ) = ∑ x 2 P ( X = x ) x^2P(X\leq x)=E(X^2) = \sum x^2 P(X=x) x2P(Xx)=E(X2)=x2P(X=x),第3列就是 x 2 P ( X = x ) x^2 P(X=x) x2P(X=x)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VhBVS1tn-1650331163542)(离散型概率分布.assets/image-20220415220708530.png)]

在x达到10前和后, x 2 P ( X = x ) x^2P(X=x) x2P(X=x)先增加后下降。

在这里插入图片描述

那么如果求方差,方差公式为: V a r ( X ) = E ( X 2 ) − E 2 ( X ) Var(X)=E(X^2)-E^2(X) Var(X)=E(X2)E2(X),根据上一张图的第4列和再上一张图的期望再平方,相减,可以求出方差。这时候再画出一个由x逐渐变大的图像,

在这里插入图片描述

随着x变大, x 2 P ( X ≤ x ) − E 2 ( X ) x^2P(X\leq x)-E^2(X) x2P(Xx)E2(X)越来越接近一个特定数值,这里是20。

和讨论数学期望的时候一样,方差的规律归结如下。如果X~Geo§,则
V a r ( X ) = q p 2 Var(X) = \frac{q}{p^2} Var(X)=p2q

几何分布总结

在这里插入图片描述

问:为什么几何分布用到p和q?

答:p代表英文单词“probability”,即“概率”,在几何分布中,代表的是单次试验的成功概率。q在统计学中往往代表1-p,也就是p’。本章以及本书后文将会大量出现这些字母。

例题,“成功”的事件为“成功滑至坡底”。

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值