Bill_Yang_2016的博客

博客已搬迁至http://bill.moe

[POJ2769] Reduced ID Numbers


题目描述

T.Chur在大学里教授不同群体的学生,每个学生都有一个独特的学生证号码(SIN),是0~10^6范围内的整数。但T.Chur觉得SIN的范围太大以至于不便于确定每个学生,故希望在每个组里都能找到最小的正整数m,使得当前组内的所有数对模m均不同余。


输入格式

输入数据的第一行是一个整数n,代表测试数据的组数。每一组测试数据以一个整数m(m<=100000)开始,代表在这个组中学生的数量,接下来的m行每行包括一个SIN,这些SIN值各不相同。


输出格式

对于每组测试数据输出最小的m,使得所有的SIN的值对m取模各不相同。


样例数据

样例输入

2
1
124866
3
124866
111111
987651

样例输出

1
8


题目分析

搜索显神威,暴力出奇迹!
Hash+暴力解决此题。
对于每一个答案从m开始暴力找(想一想,为什么?
每一个余数都用Hash判重,时间复杂度不确定,这样会超时,需要加一个小剪枝:读入的数中,两两之差一定不是答案,因为他们关于他们的差同余,因此就可秒掉了。


源代码

#include<algorithm>
#include<iostream>
#include<iomanip>
#include<cstring>
#include<cstdlib>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
inline const int Get_Int() {
    int num=0,bj=1;
    char x=getchar();
    while(x<'0'||x>'9') {
        if(x=='-')bj=-1;
        x=getchar();
    }
    while(x>='0'&&x<='9') {
        num=num*10+x-'0';
        x=getchar();
    }
    return num*bj;
}
int n,m,a[100005],Hash[100005],vst[1000005];
bool Check(int x) {
    memset(Hash,0,sizeof(Hash));
    for(int i=1; i<=m; i++)
        if(Hash[a[i]%x])return false;
        else Hash[a[i]%x]=1;
    return true;
}
int main() {
    n=Get_Int();
    while(n--) {
        memset(vst,0,sizeof(vst));
        m=Get_Int();
        for(int i=1; i<=m; i++)a[i]=Get_Int();
        for(int i=1; i<=m; i++)
            for(int j=1; j<=m; j++)
                vst[abs(a[i]-a[j])]=1;
        int i=m-1;
        while(++i) {
            if(vst[i])continue;
            if(Check(i)) {
                printf("%d\n",i);
                break;
            }
        }
    }
    return 0;
}

阅读更多
版权声明:全文无版权,目前博客已搬迁至https://bill.moe https://blog.csdn.net/Bill_Yang_2016/article/details/53862224
个人分类: 数论 同余
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭