k-近邻算法概述
定义:k-近邻算法采用测量不同特征值之间的距离方法进行分类 。
优点:精度高,对异常值不敏感,无数据输入假定 。
缺点:计算复杂度高,空间复杂度高 。
适用数据范围:数值型和标称型。
工作原理:存在一个有标签的训练样本集;输入一个没有标签的新数据,将新数据的每个特征与样本集数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般选择样本集中前k个最相似的数据,这就是k-近邻的出处。最后,选择k个最相似数据中出现测试最多的分类做为新数据的分类。
实现环境
System:Ubuntu server 20.04 (Jupyter notebook)
GPU:GeForce GTX 1080Ti(2块)
Driver Version: 450.36.06
CUDA Version: 11.0
Python Version: 3 .8.5
TensorFlow Version:2.4.1
实现流程
1. 数据准备:使用Python生成并导入数据
建立kNN.py文件,内容如下:
from numpy import *
import operator
from os import listdir
def createDataSet() :
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] #取得行数
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
在Jupyter notebook页面中新建Python3代码,并逐步输入以下代码块:
#自动重载模块 方便调试,但是比较耗时
%load_ext autoreload
%autoreload 2
#导入创建的kNN.py文件,创建训练数据集
import kNN
group, labels = kNN.createDataSet()
print(group)
print(labels)
显示如下:
[[1. 1.1]
[1. 1. ]
[0. 0. ]
[0. 0.1]]
[‘A’, ‘A’, ‘B’, ‘B’]
#数据可视化实现
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(group[:,0],group[:,1])
for i in range(np.size(group,0)):
ax.text(group[i,0]+0.05,group[i,1],labels[i])
ax.set_xlim(-0.1,1.1)
ax.set_ylim(-0.1,1.3)
plt.show()
显示如下图:
2. 实施kNN分类算法
分类算法的实现见kNN.py文件的classify0()函数。
3. 预测数据
kNN.classify0([0.0,0.2],group, labels, 3)
输出显示:
‘B’
更改测试值为[0.8,0.9],测试结果为:
kNN.classify0([0.8,0.9],group, labels, 3)
分类结果为:
‘A’